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CHAPTER 1

INTRODUCTION

Independent auditors are charged with the responsibility
of deciding on the fairness of the financial statements of
their clients. This decimsion process is admittedly complex.
Within this process, however, there are many relatively rou-
tine decision problems. These routine problems are often
amenable to statistical modeling. Conceptually, auditors
perform two types of testing--compliance and substantive.
Compliance tests are designed to provide evidence with regard
to the functioning of certain control features of the system
that gemerates the transactions and balances which ultimately
appear on the financial statements. While compliance tests
provide indirect evidence as to the fairness of these trans-
actions and balances, auditors also perform substantive tests
designed to provide direct evidence as to their fairness.

In many of these testing situations, the auditor is confronted
with a large group of reasonably homogeneous items that are

susceptible of definition as a population. An audit test



may then be realized as the examination of a sample from a
given population. Typically, the auditor examines this sample
with the aim of deciding whether or not the population as a
whole is acceptable.

In compliance testing, the criterion of acceptability
can, in some situations, be appropriately defined as the pro-
portion of erroneous items in the population (i.e. the popu-~
lation error rate). In such cases, auditors have had avail-
able a powerful statistical model known as acceptance sampling.
Both fixed sample size and sequential acceptance sampling
plans have been proposed for audit use. Sequential plans
have the advantage of lower sampling cost, on average, than
fixed sample size plans with comparable decision risks.

In substantive testing, the criterion of acceptability
is the fairness of the recorded monetary value (i.e. book
value). While auditors have had available a large number of
statistical procedures for substantive testing, most of these
procedures are inferior to acceptance sampling in the sense
that decision risks cannot be reliably controlled. To the
extent that these procedures are derived from survey sampling
methodology, they depend on the large-sample behavior of the
estimators used rather than the validity of distributional
agsumptions incorporated in a model of the problem. Such
procedures are distribution-free (or nonparametric) since
they are designed without regard for the distribution of vari-
ables in the population. But the performance of these proce-

dures has been shown (both in the audit literature and in



research on finite population sampling theory) to be population=-
dependent. A given estimator may perform poorly on a given
population. Furthermore, survey sampling methods are geared
toward estimation rather than decision. Audit tests based

on these methods tend to contrecl only one of the two decision
risks faced by the auditor.

Efforts have been made to model the substantive testing
problem parametrically (i.e. impose distributional assumptions
on the variables in the population). If such a model is appro-
priate, or robust againat violationa of the assumptions, the
resulting tests should be superior, both conceptually and in
terms of various performance measures, to distribution-free
methods. In this thesis, the acceptance sampling model of
compliance testing is extended for use in substantive testing.
I call this extension "monetary unit acceptance sampling"
(MUAS). While MUAS is not an exact test, it is designed to
be conaservative relative to ordinary acceptance sampling (here
called "physical unit acceptance sampling” (PUAS)). Thus,
under normal audlt conditions, the decision risks of MUAS
will be bounded by the decision risks of a correaponding PUAS
model. One of the drawbacks of conserva ive tests is ineffi-
clency, i.e. more sample information is obtained than is neces-
sary to attain allowable risk levels. However, the extension
from PUAS to MUAS includes, in particular, seguential plans.
Sequential implementation can, under certain conditiona, sig-
nificantly reduce the inefficiency of MUAS. I present two
gequential MUAS plans. One is derived from classical sequential



acceptance sampling. The other is based on a new Bayesian
sequential acceptance sampling model. It is hoped that MUAS
will not only be applicable in audit testing but will also
have positive pedagogical value by providing a unified frame-
work (acceptance sampling) within in which to teach audit
sampling.

The extension from PUAS to MUA3 is contained in Chapter 4.
Included in this chapter are the results of a Monte Carlo
study on the performance of MUAS. Intervening chapters con-
tain a review of the principal sources of the new models and
the devzlopment of PUAS models, including the proposal of

sequential plans appropriate for audit use.




CHAPTER 2

THE DEVELOPMENT OF STATISTICAL TESTING MODELS IN AUDITING

Statistical auditing in the United States has a hiastory
of some 50 years. It is not my purpose here to attempt a
reconstruction of this history. Rather, I intend to recount
elements of the research in audit sampling that are pertinent
to the development of the monetary unit acceptance sampling
(MUAS) models of Chapter 4. These mcdels draw primarily
upon three research strains in statistical auditing: clas-
sical acceptance sampling (both fixed sample size and sequen-
tial plans), Bayesian testing models, and monetary unit samp-
ling (MUS) models. Although MUS models have proliferated in
recent years, the esaential contribution in MUS, for purposes
of the research at hand, occurrad in 1961. More recent work
stems from Anderson and Teitlebaum (1973) and forms a body
of work that is not particularly germane to the development
of MUAS, Accordingly, we will not review much of the re-
search in MUS.



The history of statistical auditing has not been with-
out conftroversy, and the central controversy has involved
the very purpose of statistics in auditing. Early advocates
of statistical auditing tacitly or explicitly assumed that
a statistical model for sudit use shouwld be designed to dis-
criminate between acceptable and unacceptable values of some
significant quantity, this discrimination being done with
known risks of error. In statistics, such models are referred
to as (hypothesis) tests. The earliest statistical tests
proposed for audit use were variants of acceptance sampling,
and the quantity being tested was the population error rate.
Beginning in the late 1950's, this view of the function of
statistics in auditing came under increasing attack (see,
in particular, Trueblood and Cyert (1957)). The critics felt
that statistical teats supplanted auditor judgment. They
argued that statistical models should provide an estimate
of the value of some significant quantity. The auditor was,
then, free to use this estimate as he saw fit.

The watershed in this controversy came in 1956 with the
publication of Statistical Sampling for Auditors and Accountants
by Vance and Heter. The first half of this handbook is de-
voted to an exposition of acceptance sampling (both fixed
sample size and sequential). The latter half is devoted to
estimation. By 1962, a similar handbook (by Hill et al.)
omitted acceptance sampling entirely. The estimation tech-
niques were taken from survey sampling. While the advocates

of estimation were unhappy with statistical tests, they



provided their own framework within which statistical esti-
mates were to be used in auditing. The statistical estimate
of the true value should be used "to judge the reasonableness
of the book figure" (Vance and Neter (1956, p. 169)), where
book figure refers to the amount recorded by the client.
This judgment was to be effected by means of a confidence
interval for the estimate (and, thus, we will refer to such
uses of statistical estimates as confidence procedures). A
100(1~ )% confidence interval is designed such that, on re-
veated trials of the same procedure on the same population,
100(1l- )% of the estimates will fall in the interval. If
the estimator used is unbiased, we may conclude that, in
100(1~ )% of these trials, such a confidence interval con-
structed about the estimate will contain the true value.

The rule, then, was to construct a confidence interval
about the estimate; if the book value fell in this interval,
it was reasonable; otherwise it was not. And, if this was
indeed the rule, we must ask precisely what Trueblood and
Cyert (1957, p. 20) meant when they wrote, "There are no ex-
plicit rules for decision-making that are built into the sample,
nor assumed for purposes of sample size computation."

The width (or precision) of the confidence interval de-
pends on both oo and the standard deviation of the estimate,
which, in general, depends on sample size. Thus, if a cer-
tain precision is desired, it is necessary to set of vefore-
hand and draw the necessary sample size to achieve this pre-

cision. (Technically, it may not be possible, with a single



sample, to guarantee that a given precision will be attained.
But sample size can subsequently be increased if the desired
precision is not attained.) Now, Trueblood and Cyert must
have meant that the o used for choosing sample size need
not be the K used to construct the confidence interval,
While this is literally true, the practical consequences
regarding audit judgment are interesting. Consider, for ex-
ample, an auditor who sets = at .05 to choose sample size
in an estimate of inventory value. The book figure is, say,
8$500,000, and the estimate is $470,000 % $20,000, if ® =.05
is used in constructing the interval. Assume that the audi-
tor ‘a gsatisfied with precision of 330,000, Apparently, he
is #  to decrease o until the confidence interval just
contains the book velue. Since o represents (in part) the
risk that the interval does not contain the true value,
reducing that risk should not be open to criticism.

There are several vroblems here that were not addressed
in the audit literature until 1972. In that year, Elliott
and Rogers published an influential critique of the methods
used to implement confidence procedures in auditing. They
claimed that confidence procedures were being used to make
decisions. As such, the auditor faced two risks. Not only
did he face the risk that the confidence interval did not
include the book value when it was reasonable (type I risk),
he also faced the risk that it included the book value when
it was unreasonable (type II risk). By decreasing ™K in
order to accept the book value, our hypothetical auditor, in



the inventory example above, increased one risk (type II)
while decreasing the other (type I). Elliott and Rogers
went on to show how confidence procedures could be imple-
mented to control both risks. Although Elliott and Rogers
argued for the duality of confidence procedures and hypothe-
gis tests, they preferred the framework of the former. And,
at least in part because of this, they introduced a new prob-
lem in the use of confidence procedures in auditing: materi-
ality allocation. (Materiality, as an audit construct, re-
fers to the auditor's assumption that some degree of error

is serious enough to affect the financial decisions of a rea-
Sonably prudent investor. This degree of error is called
material. A lesser degree of error is immaterial and would
not affect those decisions.) Materiality allocation attempts
t0 address the problem of setting desired oprecision when the
results of more than one confidence procedure are going to
be jointly considered. We will not pursue this matter here
beyond the following remarks: (1) in the testing framework
(which we will be adopting), if we combine the results of

Several tests, the quaantity of concern is the risk of two or

more incorrect decisions, not some measure of combined pre=-
cision, and (ii) in MUS models (of which MUAS is one example),
materiality is stated as a percentage of book value, znd al-
location of some absolute quantity is irrelevant. Some ten
years later, the Elliott and Rogers position was, by and large,
incorporated in the professional audit standards in the United
States (SAS No. 39). Thus, MUAS, although cast entirely in
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the teating framework, is reasonably consistent with current
audit standards.

There were, however, more fundamental problems with many
of the confidence procedures advocated for audit use. The
accuracy of the intervals depended on the large-sample behavior
of the estimators uased. Typical audit sample sizes were un-
critically assumed to be "large enough" to insure that the
estimator was normally distributed. Simulations conducted
by Kaplan (1973) and Neter and Loebbecke (1975, 1977) provided
evidence that this assumption was not necessarily warranted.
This result must be compared with acceptance sampling (%o
vhich we turn shortly). With acceptance sampling, the audi-
tor's problem was modeled such that the test statistic fol-
lowed a known distribution--no large-sample assumptions were
needed. Unfortunately, acceptance sampling had been applied
successfully only for certain compliance tests. In 1961,
van Heerden extended the acceptance sampling model for uae
in substantive testing. However, this accomplishment.wexnt
unnoticed by the audit profession in the United States. We
will return to van Heerden in the discussion of MUS below.

We now turn to the development of classical acceptance
sampling in audit tests. Carman (1933) appears to have made
the first contribution to statistical auditing in the United
States. Carman proposed a discovery sampling model to detect
the presence of fraud in a population of similar transactions
(e.g. cash disbursements). By defining a fraudulent trans-

action as an error and sampling at randem with revlacement
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from the population, Carman showed that the total number of
errors obaerved obeyed a binomial distribution. This distri-
bution nas two parameters: n (sample size) and p (error rate).
The error rate is unknown. 1If p>0, then, no matter what n
i3, there is some risk that our sample doegs not contain an
error, and hence we conclude, incorrectly, that p=0 (i.e. a
type II decision error). If, however, we are willing to set
some minimum error rate Pas 0<p2<1, that we deem signifi-
cant, we can control the risk of failing to detect this (or
a higher) error rate by choosing the appropriate sample size.
The test, then, is of the form

hypothesis: p=0

alternative: P=p,
(We will consistently use simple hypotheses, i.e. those that
specify only one point. In the classical construction, the
simple altermative above is equivalent to the composite al-
ternative p>,p2.) Carman adopted the decision rule that if
we obgserve one or more errors, we reject the hypothesis, other-
wise we accept. The critical value (the minimum number of
errors needed t0 reject the hypothesis) need not be set higher
than one, since, if even one error is observed, the hyvothesis
is certainly false. And, by requiring at least one error
in order to reject, we face no type I risk. However, if we
accept, there is some risk of having dome so unfairly. Carman
showed that this risk--type II risk--could be contrnlled by
choosing sample size--the larger the sample size, the smaller

the type II risk. Carman also observed that this plan may
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be implemented sequentially. If we observe an exrror, the
test may be terminated and the hypothesis rejected. This
procedure should reduce average sample size but there is no
effect on decision risks (type I risk remains zexo).

Although several articles in the late 1940's and early
1950's dealt informally with the use of acceptance sampling
in auditing, thg first formal exposition in the audit liter-
ature seems to have been Vance and Netexr (1956). The hypo-
thesis of a zero error rate (used in discovery sampling) is
rarely justifiable in testing accounting controls since the
auditor usually does not expect the control to function per-
fectly. If the auditor both expects a positive error rate
and can tolerate a certain amouns of error in the population,
use of discovery sampling will result, moxe or less often,
in rejection of the hypothesis when, in fact, the population
error rate is at an acceptable level. While formally the
auditor faces no type I risk, this is irrelevant becsuse the
vroblem has not been correctly modeled. Acceptance sampling
is designed to discriminate betweern an acceptable (but posi-
tive) error rate and an unacceptable error rate. The test
is of the form

hypothesis: P=p,

alternative: P=P,
where 04 pl< p2<l and Py is an acceptable error rate. We
now face both type I risk (reject unfairly) and type IX risk
(accept unfairly). To control these risks, we now manipulate

both sample size and critical walue, (Critical value can no
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longer be independently set at one as in discovery sampling.)

The implementation of sequential acceptance sampling
presents difficulties far beyond those of gequential discovery
sempling. However, in the 1940's, Wald developed a sequential
test of hypotheses, one form of which was sequential accep-
tance sampling (Wald (1947)). Vance (1950) adapted Wald's
teast to audit problems. In sequential acceptance sampling,
ve must decide at each sampling stage (e.g. after each obser-
vation) whether to accept, reject, or continue to make cbser-
vations (because both the type I and II risks of an immediate
decision are too high). This amounts to finding, at each
sampling stage, an appropriate number of observed errors at
vhich to accept and an appropriate number at which to reject.
If the number of observed errors lies between these two num-
bers, we continue to make observations. The advantage over
fixed sample size acceptance sampling is that, on average,
ve will make decisions at the same risks but with fewer obser-
vations., Further, as Vance was quick to recognize, most audit
tests are, in fact, conducted sequentially. A sequential
sampling plan represented & natural formulation of the audit
problem,

Since the notion occurs in other discussions of sequen-
tial sampling, we should note that Vance committed a serious
breach of the statistical testing paradigm. Ee suggested
that one of the benefits of sequential testing was that it
alloved the auditor to continue sampling if he was dissatis-
fied with the result at any given stage. This amounts to
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choosing the decision rule after the data have been observed.
If the auditor wishes to control decision risks at stated
levels, he is not free to adopt a new decision rule in the
event that the results under the old rule are not to his
liking. A correct formulation for the behavior suggested

by Vance is a sequential plan in which type I risk is at
lower than allowable levels at early sampling stages and rises
gradually to the allowable level at late stages. Roberts
(1976) propcsed such a plan. It is a four-stage sampling
plan, truncated at the fourth stage. One of the shortcomings
of Vance's proposal was the absence of any truncation rule.
Thus, at least occasionally, sample size could be quite large.
Truncation, however, affects decision risks and complicates
analysie of the bghavior of the test. In part to overcome
this difficulty and in part to simplify implementation, Roberts
proovosed grouping the observations to yield a four-stage test.
(A more accesaible source for this sampling plan is Roberts
(1978) p. 57ff.) Implementation difficulties have, until
recently, plagued sequential sampling. The advent of computer-
asgisted auditing, based primarily on microcomputers, has
radically altered this situation.

Despite the impressive logic of these acceptance sampling
models, it appeared for some time that they could not be ap-
plied to test the fairmess of a monetary value (i.e. a substan-
tive test). Vance (1950) had already recognized the desira-
bility of such an extemsion but considered it impossible due

to the absence of a necessary relationship between the occurironce
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of an error and the monetary value of that error. In 1961,
van Heerden offered an ingenious solution to this dilemma.
The monetary value of interest is typically contained in a
balance composed of subunits defined by the audit client (e.g.
an inventory balance composed of various items or parts).
Van Heerden suggested that, instead of viewing this balance
as a population of natural subunits, we view it as a popula-
tion of monetary units (dollars, pounds, francs, marks, yen,
etc.). For convenience, we will refer to these units as
"dollars." We agree to classify a dollar as either fictitious
(an error) or sound (a nonerror). The error rate now becomes
an index of the reasonableness of the book value: a high
error rate indicates material overstatement; a low error rate
indicates immaterial overstatement. This general approach
is called monetary unit sampling (MUS).

A difficulty arises when we actually attempt to identify
a particular sample dollar as fictitious, because the client
accounts for subunits rather than the individual dollars that
comprise the subunits. If we are willing to adopt a discovery
sampling model, this identification problem is not serious.
If any of our sample dollsars belong to a subunit that is over-
stated, we may safely reject the hypothesis that p=0. But
once we adopt the moxre realistic acceptance sampling model,
the identification problem is critical. Van Heerden not
only solved this problem but solved it in such a way that
the whole apparatus of acceptance sampling worked exactly

as it had in the nonmonetary situation. In particular, the
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nunmber of observed errors could be constrained to obey the
binomial distribution. (Van Heerden's solution is formally
considered in Chapter 4, including a proof of this latter
clain.)

Lest I overstate van Heerden's contribution, let me add
that, as written, van Heerden propvosed an MUS discovery samp-
ling plan. While he provided a methodology to implement
MUS acceptance sampling, he does not make details of such
an implementation clear, referring only to certain (uniden-
tified) tables to aid the auditor if one or more errors are
actually observed. It does appear that van Heerden used the
discovery sampling model simply because it requires fewer
obgservations than an acceptance sampling model with the same
alternative. Thus, even if an error is observed, it is not
clear that van Heerden is willing to reject the hypothesis.
Similarly, in a reference to the sequential implementation
of his plan (again, he provides no details), he repeats Vance's
contention that the auditor can continue sampling if the ini-
tial result is "unsatiafactory."

The last research strain that we draw upon 1s the Bayes-
ian testing framework. By and large, the work in Bayesian
moda2ls in auditing hag been in estimation and involves a re=
formulation of confidence procedures. In the Bayesian frame-
work, estimation may naturally lead to considerably more campli-
cated models than testing. The essential elements of Bayesian
testing were introduced in the audit literature by Kinney
(1975 ). Kinney assumed that there are two possible "states
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of nature" facing the auditor: (i) the book value is materi-
ally correct, and (ii) the book value is materially incorrect.
The auditor must decide which of these states actually holds.
As in the classical acceptance sampling framework, the auditor
can make two decision errors--type I and type II. However,
the risks of these errors are defined not as probabilities
but as expected losses. That is, we define a loss function
that specifies our losses for all possible outcomes (with
two possible decisions and two possible states of nature,
there are four possible outcomes). Kinney's loss function
consists of a variable sampling cost, a fixed cost to access
the sampling frame, and a fixed cost for an incorrect deci-
sion (which may vary as to the type of decision error). The
auditor wishes, in some sense, to minimize his expected loss.
However, of two competing decision rules (sampling plans),
one may have lower expected loss under one state of nature
and higher expected loss under the other. As it stands, these
rules are noncomparable. The Bayesian approach solves this
problem by requiring that we weight the expected losses using
a prior distribution on the states of nature. Thus, if, be-
fore sampling, we feel that one state is more likely than
another, the expec;ted loss under this state plays a more sig-
nificant role in our choice of decision rules. With the ad-
dition of a prior distribution and loss function, the accep-
tance sampling model goes through much as before.

Although the idea of choosing a decision rule with mini-

mum risx is appealing, we may ask if there is any set of
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orinciples that requires us to do so. If we define loss as
negative utility and if our utility function obeys the wvon
Neumann-Morgenstern {1953, p. 23) axioms, then this question
may be answered affirmatively. This defense of Bayesian
procedures has been expounded at length by Savage (1972) and
Lindley (1971).

In the following chapters, I present both classical and
Bayesian testing models. I assume that all of the models
can ke usefully applied to assist the auditor in making cer-
tain routine (but nonetheless important) decisions. Juxta-
position of the two approaches to the same problem will, it

is hoped, facilitate a reasoned choice between them.
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CHAPTER 3

A STATISTICAL COMPLIANCE TESTING MODEL:
PHYSICAL UNIT ACCEFTANCE SAMPLING

Auditors perform a variety of tests. Conceptually, two
types of audit tests are defined in the professional audit
standards in the United States (SAS No. 1): compliance tests
and substantive tests. In compliance testing, it is often
reasonable to identify the object of interest as an error
rate in a population of similar transactions. An error in
this situation is the failure of some control feature in the
accounting system that generated the transactions. For ex-
ample, a proper cash disbursement should exhibit, among other
things, an authorized signature on the document effecting
the disbursement. The lack of an authorized signsture can
be defined as an error. Typically, the auditor expects the
population to contain some errors (i.e. controls are not ex-
pected to aperate perfectly) and is interested in discrimi-

nating between an acceptably low error rate and an unacceptably
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high error rate.

Such situations correspond very closely with the quality
control inspection setup, in which production lots are exa-
mined with the aim of discriminating between lots in which
the rate of defective items is acceptably low and those in
which it is unacceptably high. Acceptance sampling is a sta-
tistical procedure first designed to model the quality control
inspection setup. Subsequently, acceptance sampling was
adopted for use in audit testing.

In this chapter, we consider the acceptance sampling
model in several forms. Our purposes are twofold. First,
the development presented in Chapter 4 extends the use of
acceptance sampling to substantive tests of the fairmess of
a moaetary value. Thus, the models of this chapter are of
broader applicability than may be immediately apparent. (In
part to distinguish these models from the extension in Chapter
4 and in part because of the modifications cited below, we
formally refer to the models of this chapter as physical unit
acceptance sampling (PUAS). But, informally, we retain the
general term acceptance sampling.) Second, I propose several
modifications to acceptance sampling for audit use. These
include (i) a simplified Bayesian framework for acceptance
sampling that should prove easier to implement than previ-
ously proposed Bayesian models for audit tests, (ii) a new
Bayesian sequential acceptance sampling model, and (iii) algo-
rithms to compute the exact decision risks and avproximate

expected sample sizes of the proposed sequential tests-—--these
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algorithms should be efficient for typical audit sample
sizes (say, n<£200). Before discussing PUAS as such, we
briefly consider the general testing framework within which
the PUAS models will be developed.

Acceptance sampling is one form of statistical test,
To conduct any statistical test, we must model our problem
along the following lines. We identify the characteristic
of interest with the random variable (or vector) X. A
realization of X will be denoted as x, and the set of all
possible realizations will be denoted by?}(, the sample
space. We assume that the distribution of X (or of some
function of X) is one of the family {P x pe.(P} indexed by
the parameter p. Two subsets of the parameter space@ are
of interest: G)l and 6)2. It is usual, but not necesaary,
that these subsets exhaust the parameter space. For reason-
able tests, the subsets must be disjunctive. Two hypotheses,
the null aad the alternative, are entertained with regard
to p, namely, Hl: pe(Pl and HZ: p&.@ . We will consider
the case where these two subsets are restricted to one point
each, i.e. a test of simple hypotheses:

;1: pjpl ' < (1)

2* PTP2
(We will occasionally refer to the null hypothesis, Hl’
gimply as the hypothesis. Furthermore, the terms accept
and reject, when used alone, should be understood to refer

to the null hypothesis rather than the alternative hypothesis.)
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A finite action space & is available, usually consisting of
a,=choose I, (accept the null) (2)
a,=choose H, (reject the null)

For sequential tests, we must extend this space to include

the nonterminal action
a;=continue sampling (3)

We seek a decision rule d: >, in a given class 0 of

rules, with minimum risk., Risk is defined differently in

the classical and Bayesian testing frameworks. Two decision

errors may occur:
type I error: chooge H2 when Hl is true (4)
type II error: choose H1 when H2 is true

We will refer, on occasion, to the operating characteristic

(0C) function and the vower function. They are defined by
0C function: C&(p)=Pp{d(X)=al}
power function: ﬂ3(p)=Pp{d(X)=a2}

The OC function gives, for all p, the probability of taking

(5)

action ay (accept Hl)‘ The power function gives, for all p,
the probability of taking action a, (reject Hl). For proper

tests, (p)+R(p)=l.

3.1 N-P Fixed Sample Size Acceptance Sampling
Neyman-Pearson (N~P) tests are an important subset, a

most powerful subset, of likelihood ratio (IR) tests. My

description of N-P testing follows Bickel and Doksum (1977).
In the N-P approach, risk is defined as the probability

of decision error (error probability for short). There are



23

two risks corresponding to the two types of decision error:

type I risk: Ppl{d(x)=a2}

type IT rigk: P, {d(X)=a;} e)
We may also state thesg risks in terms of the OC and power
functions:

type I risk: (3(p;)=1-o(p,) (7)

type II risk: o(p,)=1-{(p,)
The type I risk of 4 is called the level of the test and is
conventionally denoted ®. Type II rdisk of d is conventionally
denoted 3, and 1-3 is referred to as the power of the test.
The N-P criterion is to find, within the class of all fixed
sample size decision rules with level at least X, the most
powerful rule. Thus, we minimize type II risk for a given
type I risk. The N-P Lemma states that the most powerful
rule for problem (1) is of the form:

4R(x) {al 12 £%(x;p,)/£M(xip;) <D, D20

a, otherwise

(8)

where *%(x;p) 1is the (conditional on p) frequency function
(if X is discrete) or density function (if X is continuous)
of x=(x1,...,xn), and D i3 some constant. The ratio of fre-
quencies (or densities) is called the likelihood ratio (LR)
and will be denoted by
ln(x.pl,p2)=fn(x;p2)/fn(x;pl) for x=(x1,. .. ,xn) (9)
(1f X=Xy,
It is true in general that we can find a decision rule

the IR will be denoted by l(xi,pl,pz).)

based on a sufficient statistic for p that is risk-equivalent
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to any rule using the sample information itsgelf. Often, the
decision rule can be simplified by finding a test statistic
T(X) that is sufficient. The equivalent rule is
dn(x)a{al 1z ¢ (x)=t<C (10)
a, othervise
where the constant C is called the critical value. The criti-
cal region, where dn(x)=a2, is {x: Tn(x)=t>, G}. The decision
rule is specified by choosing critical value C so as to attain
a deaired level and sample size n s0o as to attain a desired
powver. That is, we seek the smallest C and n such that the
following conditions hold:
/3(pl)=1=p1{ r ()% c} &
Aley)=ry (103012 18
(The rightmost inequalities reflect the possibility that exact

oL
(11)

level and power may not be attainable for discrete distribu-
tions, unless we randomize over decision rules.)

I present the following example, which may be construed as
a compliance test, in some detail. The same example will be used
for the alternative models discussed later. The use of one

example should facilitate comparison of the models,

Example 3.1. An audit client maintains a purchased parts
inventory on perpetual records. It is carefully controlled,
and the client would prefer that the auditor rely on the per-
petuals rather than require a complete count. The auditor
agrees to test the perpetuals. One procedure in this test will

be the comparison of recorded and on-~-hand quantities for a
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sample of items. In this procedure, the auditor is primarily
concerned with the proportion of errors rather than the size
of the errors, which he expects to be uniformly small. The
auditor decides to model the problem statistically as follows:
(1) a difference between recorded and on-hand quantities
will be treated as an error (all items are errors or
nonerrors)
(11) a counted item will be identified with the random vari-
able X according to the rule:
1l if the ith item is an error
18{0 otherwise
(ii4) selection of items to count will be made randomly with
replacement from the perpetual records (the sampling
frame)
Under these conditions, the {xii are independent and identi-
cally distributed (i.i.d.) binomial random variables with
parameters 1 and p, where p i1s the (unknown) error rate. In
simpler notation, X,~Asbinomial(l,p). (See Appendix A for this
and other distributions mentioned in this chapter.) Further,
sn""z;;l Ximbinomial(n,p) and is sufficient for p.
The auditor's problem is now transformed into a test for
p. The client claims the error rate does not exceed .0l. The
auditor decides that an error rate of .05 or more is unaccep-
table. He proposes to test
Hl: =.01
Hy: p=.05
The N-P decision rule is of the form (10):
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ir s < C
dn(x)= 31 n
a, otherwise

where s =37 , x,. To find the critical value and sample size,
the auditor must specify the desired level and power of the
test. He chooses .10 and .85 respectively. Thus, he wants

A.01)=p {83 c}4.10

B(.05)=P o533, C}3.85
Using binomial tables, we find n=94 and C=3 is an acceptable
test, with (3(.01)=.069 and /3(.05)=.855. The auditor proceeds
to select randomly with replacement 94 items from the perpet-
uals. He then counts each item and records the errors observed.
If these equal or exceed 3, Hl is rejected and the error rate

agssumed to be .05.

As g practical matter, if tables are to be used, it is
more conveniant to use the Poisson approximation to the bino-
mial distribution. I provide a short table of the cumulative
Poisson distribution in Appendix B. To use the Poisson approx-
imation, set q=np. In Zxample 3.1, q1=.01n and q2=.0‘5n, thus,
q2=5q1. For any given q, find the smallest ¢ that gives a
level of .10 or less. Then check the power obtained with this
C for 5q. For Example 3.1, we try, say, ql=l.0. The smallest
C is 3, giving a level of .080. The power of this test is
found under q2=5 with C=3. It is .875--glightly high. With
C=3, the smallest Qs posaible 1is 4.70 with a power of .B848
(assuming we are willing to round to .85). Then ql=4.70/5=.94
and linear interpolation gives a level of .070. Thus, n=94



27

and C=3 is an acceptable test.

Some care must be taken in using tables of discrete dis-
tributions, since the underlying function is not smooth. For
example, although n=94 was the best we could do if C=3, we
have not yet ruled out the possibility that a smaller n with
C=2 might work. In fact, n=68 with C=2 gives acceptable power
but an unacceptable level. Nevertheless, this tesat would be
preferable to any other using a sample size between 68 and 94
with C=2.

We now consider a post-experimental measure of risk. If
we accept Hl’ then less than C errors were observed, and we
would have accepted H1 even if C had been set as low as s+l,
where we observed s errors. We define the achieved power of
the test as PPZ{ 8,7 s+lS. Similarly, if s C, we would have
rejected Hl even if C had been set as high as s. We define
the achieved level of the test as Pplisna s}. (The achieved
level is more commonly called the p-value of the test.) Now,
the achieved power and level of the test will equal the desired
power and level only if s=C-l and 8=C, respectively. Wwhen
this is not so, the test has "overshot" its goal, and risk has
been reduced holow desired levels, at the expense of some un-
necessary sampling. Assume, in Example 3.1, that we observe
g=1 errors and accept Hl‘ Since we controlled power at .89,
we know that the chance of this result if H2 is true does not
exceed .15, but apparently it is less. Referring to q2=4.70
in Appendix B, we find achieved power of .991. That is, there
is a chance of about .0l of this result if H2 is true.
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Alternatively, if we observe s8=5 errors and reject Hl, ve find
under q1=.94 an achieved level of about .003. Achieved power
and level provide a post-experimental measure of our "confi-
dence” in the decision.

Given a positive probability of "overshooting", the N-P
test apparently can be improved upon by some procedure that
"stops" nearer the goal. By the N-P Lemma, no fixed sample
8ize procedure can improve upon the N-P test. However, Wald's
sequential probability ratio test, which we will consider in
the next section, is designed precisely to reduce this amount
of "overshoot" and does improve on the N-P test.

The model presented in Example 3.1 is isomorphic with the
(fixed sample size) acceptance sampling model in quality con-
trol inspection, where sample size is small relative to lot
size or sampling is with replacement. We extend the model to
discovery sampling in Example 3.2 below. This example will

not be presented for altermative models discussed later.

Example 3.2. 4n audit client processes payroll on com-
puter. The payroll register is generated under control of a
program that has been in use for several years. One of the
auditor's procedures tests the crosafooting accuracy of the
register. The client claims that no crossfooting errors occur.
The auditor will tolerate an error rate of less than .05. He
proposes testing

Hl: p=.00

HZ: p=.05
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The binomial distribution is degenerate at p=0, hence it would
seenm impossible to compute a level for this test. However,

i£ the auditor chooses C=1, he cannot reject unfairly, i.e.

he faces no type I risk. Thus, setting C=1, n may be found

as before by controlling power. If desired power is .85, we
find the smallest acceptable d, to be 1.90 giving n=38 and
power of .850.

%+2 Wald Sequential Acceptance Sampling

Regardleas of sampling plan, the audit of the sample
(i.e. the fieldwork) proceeds sequentially in compliance
tests. In fixed sample size tests, it is apparent that, as
soon as a critical number of errors is found, auditing of the
sample may stop and the null may be r’ejected. But there is
no similar shortcut to accevoting the null. In discovery sanp-—
ling, this is reasonable, since acceptance requires an entirely
error-free sample. But, in acceptance sampling, there may
very well come a point during the test when one or the other
action becomes highly improbable. It would be advantageous
to have a rule that tells the auditor when a given action
becomes sufficiently improbable, allowing him to terminate
fieldwork on the test. NMore generally, the rule should indi-
cate when the risk of a given action becomes acceptably low.

Wald's sequential probability ratio test (SPRT) is such a rule.
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Wald developed the SPRT during the 1940's. There have
been extensions, but my description mainly follows Wald (1947).
Wald improved on the N-P test by enlarging the class of proce-
dures being considered. The additional procedures are those
for which the number of observations is random. These proce-
dures==-gsequential procedures--~terminate when evidence for one
hypothesis becomes persuasive. The improvement is in sample
size: <for given level and power, the SPRT has a significantly
lower expected sample size than the optimal fixed sample size
of the N-P test. For the problem given by (1), Wald and
Wolfowitz (1948) proved that the SPRT has the lowest expected
sample sizes (under Hi and Hz) of all teatsa with level of und
power 1-3.

The N-P test for problem (1) rejects H, when the IR (9)
equals or exceeds some positive constant. Wald suggested
forming the LR after each observation. By appropriate choice
of constants A and B (0< A< 1< B<c0), a test of level oL and
power 1l-(3 is

a, 1if ln(x,pl.pz)SA
d%(x)={ a, if 1%(x,p,,p,) 2B (12)
as otherwise
where action as is "continue sampling." This is the extended
action space given by (2) and (3).

As in (10) above, Tn(x).—.sn is a sufficient statistic,

and the decision rule given by (12) is risk-equivalent to
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a, if T, (x)g &,
d*x)=qa, 12T (x)2r, (13)
a, otherwise
where &, and r, are, respectively, integer-valued acceptance
and rejection numbers. These numbers may be determined from
the IR bounds A and B as follows (see Wald (1947, p. 90f£f) for

the details of this derivation): 1let

¥=Pp/Py (14)
y=(1-p5)/(1~p;)
and
u=(log A - n(log y))/(log w - log y)
(15)

v=(log B ~ n(log y))/(log w - log y)
Then, a, is the largest integer $u, and T, is the smallest

integer >

2 V.

The test in (13) is completely specified once we have
chosen the bounds A and B. Unfortunately, these bounds depend
upon the sampling distribution of the IR and, so, may be dif-
ficult to determine. However, Wald proved that

A2(3/(1-ot)=A"

B4(1-3)/X =B’

Replacing A and B with A' and B' results in a change in risks
from X and (3 to ' and A'. Wald showed that X'+R'¢ x+f3.

(16)

He also obtained useful approximations for the OC function and
the ASN (expected sample size) function of the SPRT. We will
not pursue these results further due to considerations raised

in the following paragraph.
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The SPRT is only one of many possible sequential tests.
Its distinguishing characteristic is the use of constant bounds
for the IR (i.e. A and B do not depend on sampling stage n).
Termination occurs only when one or the other bound is reached
or exceeded. The SPRT posgsesses certain optimal properties--
the result obtained by Wald and Wolfowitz has been noted.
But the true SPRT has not been used extensively (see comments
by Wetherill (1975, p. 24)). Presumably, the variability of
sample size, with its detrimental effect on the planning of
experiments, is an important factor. Although Wald proved that
the SPRT terminates with probability one, the sample size will
occasionally be large relative to the expected size. To guard
against this eventuality, vwarious truncation rules have been
proposed. These rules do not allow the sample size to exceed
some stated maximum. As a practical matter, I will assume
that only truncated sequential procedures are acceptable for
use in audit tests, and we will restrict our search for se-
quential procedures to the class of truncated SPRTs., (It
should be noted that it is not clear that truncated SPRTs enjoy
any optimal properties with respect to the class of truncated
sequential procedures.) The Wald approximations for the OC
and ASN functions are not useful for truncated SPRIs if trun-
cation occurs at moderate sample sizes. The OC function of
truncated SPRTs may be obtained exactly, and the ASN function
may be approximated more closely.

The choice of truncation rule is not obvious. Wald spec-
ulated that, if truncation occurred somewhat beyond the optimal
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fixed sample size, the increase in deecision risk would be mod-
erate. In the spirit of this speculation, a reasonable trun-
cation rule is the following: pursue the SPRT until a termi-
nal decision is made or the N-P optimal fixed sample size is
reached; 1f the latter occurs, abandon the SPRT and follow the
N=P rule. More formally, the decision rule is
a®(x) if n<n*
d(x)= {

dn*(x) otherwise (a7)

a, if Tn(x) < a,
d*x)={ a, if T (x)2T, (18)
33 otherwise
and
8 if Tn*(X) <C

32 otherwise

dn*(x)={ (19)

In the present case, Tn(X)s I:Ll::l X;=8 . A4s before, C is the
critical value of the N-P test, and we will now refer to the
optimal. fixed sample size as n*.

The test d®(x) is derived from dn*(x) as follows: given
desired risks of o and (3, an optimal fixed sample procedure
is selected with risks of «* and (3* not exceeding the desired
risks; the bounds (A',B') for the SPRT are computed using o*
and A* and are converted into acceptance/rejection numbers
by the relation given in (15), except that r, cannot exceed
C. (The relation in (15) may produce an r,>C, however, once

sn=c, the test will reject at n=n* if not earlier. Hence,

the restriction r < C lowers ASN with no effect on risk.) We
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now turn to the OC and ASN functions of d(x).

It will be necessary to take into account explicitly
the randomness of n in sequential tests. To this end, let
us denote the random stopping time (the value of n when the
test terminates) by N.

In principle, the OC funetion of any truncated SPRT may
be obtained by a method deseribed by Aroian (1968). The method
is based on the observation that the test can terminate in
acceptance only at the acceptance points. Similarly, if the
test accepts, then the test statiastic at the termination
point, SN' can only be an acceptance number corresponding to

the acceptance point N. More formally, let

Q(i(p)=Pp{SN=i and the test accepts Hl} (20)
Then,
«(p)=ZI55 , (p) (21)

where C is the critical value of the fixed sample size test
at n*, Note that N is a functiom of i if the test accepts.
The summation in (21) runs only to C-1 since it is the largest
accentance number. Since all truncated SPRTs are proper

tests, we have immediately (3(p)=1l-at(p).

Example 3. continued from Example 3.1). In Example 3.1
we found n*=94, C=3, o{=.070, and (3 =.152. Substituting in (16),
A'=,152/(1.0-.070)=.163
B'=(1.0-.152)/.070=12.114
Using the relation in (15) and bearing in mind that we will

truncate the test at n*=94 if no decision is made earlier,



TABLE 3.1
Acceptance/Rejection Numbers for the Test in Example 3.3
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FIGURE 3.1
Acceptance/Rejection Regions for the Test in Example 3.3
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the acceptance and rejection numbers are entered in Table 3.1.
Note that, while acceptance camn occur at only three points
(n=44, 84, or 94), rejection can occur at any point except
n=l. Recall also that no r, is allowed to exceed C=3, even
though r, should increase to 4 at n=60 by the relation given
in (15). We may graph this test as in Figure 3.1, where, for
convenience, the rejection points are not shown exactly.
Clearly, direct computation of the power function is not
practicable. But the OC function is more tractable. We
first identify the posaible paths to acceptance and then com=-
pute the probability associated with that path. This method
is best illustrated by means of a tree diagram, which we will
call an acceptance tree. The acceptance tree for this test
is presented in Figure 3.2 along with the branch and path
probabilities assuming p=.0l. I have used the binomial dis-
tribution here, rather than the Poiason, because some of the
branches are quite short, if length is measured in number of
observations, and the Poisson approximation becomes inaccurate.
To illustrate the computations involved, the probability
of the firet branch is P {8, =0%=.8262. The probability of
the leftmost branch at the second level is P.OJ.{ 525=OS=.7778,
where the length of this branch is 44-19=25. This path now
terminates, and, since it is the only path to acceptance with
i=0 errors, we have 0(0(.Ol)=(.8262)(.7778):-6426, the proba-
bility of this terminal path. There are two paths that ter-
minate in acceptance at n=84 with i=1, hence 0<l(.01)=.1086+
.0825=,1911. Proceeding in this way, we find (.01)=.934.




n=0

n=19

n=84

n=94

note:

FIGURE 3.2

Acceptance Tree for the Test in Example 3.3
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Thus, the level of the test is 1-.934=.066. Computing the
same terminal paths assuming p=.05 gives ®&(.05)=.192. Hence,
the power of the test is 1-.192=,808.

Aroian's method becomes tedious when critical value and
sample size become even moderately large. But the computation
is amenable to computer solution, and an algorithm to perform
this chore may be found in Appendix C, as well as an algorithm to
compute acceptance/rejection numbers. For typical audit
sample sizes (say, n=200 or less), this algorithm is effici-
ent. We note that the OC function of the truncated SPRT dif-
fers from that of the N-P test. We will return to this ques-
tion after considering the ASN function.

Although Wald provided an approximation for the expected
sample size of the SPRT, this approximation is too conser-
vative for truncated SPRTs when truncation occurs at moderate
sample sizes. Moreover, the truncation rule we have adopted
alters the rejection region, affecting the ASN function. (As
was noted in Example 3.3, the rejection numbers for the true
SPRT would have increased to rn=4 at n=60.) For these reasons,
I will derive a better approximation to the A§N function for
the test given by (17). The method of derivation is due to
Wald (1947, p. 52f).

Note that, due the truncation rule of (17), N{n*, where
n* ig the optimal fixed sample size. Partition the sum
sn,=x1+...+xn, as follows:

> SETIRED SO S IPRED MILIC PR IRRD S (22)
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Taking expectations and letting E(X):E(Xl)=...=E(Xn*),
n*E(X):E(xl-o-. . ‘""XN)+E(XN+1+' ; .+Xn*) (23)

Since, for m> N, xm is independent of N,
B(Xy 1+« «+X o) =E(n*-§) E(X)

=n*E(X)-E(N)E(X) 24)
Substituting (24) in (23),
B(N)=E(X, +...+Xy)/BE(X) (25)
=E(3¢)/E(X)
Thus, under p,
EP(N)aEp(SN)/p (26)

where we assume p>O.

Now, in the test given by (17), Sy can take on only the
values 0,1,...,0, where C is the critical value of dn*(x).
To assess EP(SN)’ we need the probabilities that Sy takes on
these values. Define, analogously with (20),

ﬂi(p)=Pp{ Sy=i and the test rejects Hl} (27)
then

Ble)=35.; Ay (p) (28)
Now

E(S)=% 305 104 (+3 5 14,(n) (29)

The probabilities {og(p)ﬁ are provided by Aroian's method,

but the { Bi(P)X are not so easily assessed. However,

S 1R, cA (p)=cAlp) (30)
and (B(p) is known. Hence
B, (Sy) 205 1 & (0)+¢ A(p) (31)

and
B, (M) £ (75 1 o, (p)+¢ B(p))/p (32)
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The approximation given by (32) may be fairly good if 3(p)
is not too large, thus it should be better under o=p, than
P=p,. We can easily improve on it for most tests.

Let my be the first rejection point, let ;j=rmlbe the
rejection number at this point, and let , be the last re-
jection point for which the rejection number is j, i.e.

Tn. =T 415 =T =j., Then, if we assume that it is not pos-

e Bl ! 2
sible to accept Hl at or before m,,

By(pI=ryis, 2 1} (33)
where the probability is based on the fixed sample size of
o, observations. (Conceptually, we can extend any path for
which N€ n, to the point msy. For any such hypothetical path,
Sm2>/3 because, if NS m,, We reject Hl (by assumption, we
cannot accept), and the smallest rejection number from my to
m, is j.) Using (33), we have the approximation

Cc-1

By(M & (Z 775 10ty (p)+3 B(p)+C( 8 (p)= 34(p)))/p (34)
If it is possible to accept Hl prior to making m, observations,
then the test strongly favors H,. In this case, the approxi-
mation given by (32) should ve adequate, since interest will
center on the ASN when P=py. For tests with only two rejec-

tion numbers, it should be noted that the approximation in
(34) is exact.

Example 3.3 (continued). From the acceptance tree in

Figure 3.2, we have
0(0(.01)=.6426
°‘1( .01)=.1086+.0825=.1911
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™, (.01)=.0397+.0119+.0301+.0188=.1005
The smallest rejection number (from Table 3.1) is j=2. It is
sufficient for rejection through m=19 observations. Acceptance
cannot occur prior fio n=44 observations, hence

Ro(.01)=P {8, g3 2§=.0153
(where the probability is based on a fixed sample size of 19).
As found earlier, A(.01)=.0658. Hence, we have

B 91(Sy) € (0).6426+(1).1911+(2).1005+(2) .0153

+(3)(.0658-.0153)=.5742

and

E o (N) £.5742/.01=257.42
Proceeding in the same manner for p=.05, we find

E o5(N) $46.44
(Since there are only two rejection numbers, these results
are actually exact.) Had we used the approximation in (29)
we would have obtained 58.95 and 51.34, respectively. Note
that the relative error is much larger when p=.0S5.

To carry out the truncated SPRT, the auditor must draw
a sample of 94 items from the perpetuael inventory listing.
He audits these items sequentially in the order selected from
the sampling frame. For each error observed, he increments
the test statistic Sn by one. The teat terminates when g_=a

nn

(accept) or s_=r_ (reject) or n=94. If the latter occurs,

nn
Hl is accepted if there are no more than 2 sample errors.

We will pause briefly to compare the N-P and sequential
tests of Examples 3.1 and 3.3. The principal results are:
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fixed gample size sequential
level .069 .066
pover .855 .808
E.OI(N) 94 57
EOOS(N) 94 46

Doubtless, if p=.01l, the sequential test is superior to the
N-P test, since we face, on average, lower decision risk and
lower sampling cost. If p=.05, the situation is not clear.
ASN has decreased even more than under Hl’ but we have losat

a considerable amount of power to detect p=.05. The classical
model does not allow us to assess this tradeoff explicitly,
and, so, we are unable to say which test is "better."

It is, of course, possible that, regardless of savings
in sampling cost, the increase in type II risk in the sequen-
tial test is unacceptable to the auditor. In such a case,
we have two possible approachas. The auditor may respecify
desired risks and recalculate the sequential test, continuing
until an acceptable test ig found. In Example 3.3, for in-
stance, desired risks were initially set at .10 and .15 for
type I and II errors respectively. The auditor could try,
say, .12 and .12, in light of the initial results. In this
approach, the methodology of this section should be viewed as
an iterative procedure designed to produce an acceptable, not
necessarily optimal, sequential test.

The alternative approach is to relax ‘the restriction to
SPRT-type acceptance/rejection regions. We expand the class

of procedures considered to include all those truncated at n*
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in accordance with the N-P rule. In this (very large) class
we search for a "beat" or, at least, an acceptable procedure.
While this approach is conceptually appealing, it is fraught
with practical difficulties. In the classical paradigm, the
very definition of "best" is problematic for sequential pro-
cedures. However, granting that a reasonable definition is
available (as 1is the case in the Bayesian framework discussed
in section 3.4), implementation is contingent on the discovery
of an efficient search algorithm. (Whether such an algorithm
exists depends on the theoretical question of the existence/
uniqueness of a "best" test.) We will return to this question
after discussing Bayesian sequential procedures in section

3.4 below.

3.3 Bayesian Fixed Sample Size Acceptance Samplin.g

There are two principal objections to the optimality of
N-P tests: (i) losses from decision errors and the cost of
sampling are not incorporated in the analysis, and (ii) prior
information (if any) as to the relative likelihood of the
hypotheses is suppressed. Statistical decision theory (Wald
(1950)) attempts to rectify the former omission, and Bayesian
decision theory attempts to incorporate the latter. My pre-
sentation follows Berger (1980) for the most part.

Prior information may be incorporated via Bayes theorem
if such information is summarized as a probability distribu-
tion. wWe will adopt the simplest approach to prior informa-
tion under the problem given by (1). Our prior (distribution)
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is of the form

eley)=gy, 0<gy<d (35)

&(p,y)=g,=1-g;

Thus g(p) is a frequency function, placing all its mass at
two points in the parameter space.

Following Wald (1950), we assume the existence of a loss
function. Further, we assume that it is additive in decision
error loss and sampling cost. In the testing framework, a
natural loss function has the following form: apart from
sampling cost, there is no loss for correct decisions, and
losses for incorrect decisions may vary by type of errcr but
are otherwise constant. We also assume that sampling cost is
proportional to sample size. More than this, we take the
constant of proportionality to be one. Thus, losses will be
measured in unit sampling costs (USC). Alternatively, a USC
may be interpreted as-average audit time per sample item.

Under these assumptions, our loss function is

L(p,a,n)=L(p,a)+n ! (36)
where the decision error loss is of the form
0 it i=J
I‘(piia:’)= (37)
Kj_‘_j ifr 1#j

Prior information summarized in a probability distribution
g(p) is incorporated with sample information as reflected in
the likelihood function fn(x;p) by means of Bayes theorem to
yield the posterior distribution gn(p;x) as follows:

g™ (p;x)=g(p) £2(x;p) /a®(x) (38)
where m™(x) is the marginal distribution (i.e. urconditional



45

on p) of x=(x1,...,xn). In our case, given the discrete prior
(35), (38) may be written
en(pi;x)=s(pi)fn(x:pi)/2§’_l g(pj)f"(mpj) (
39)
=eirn(x,pi)/zj,l g2 (x;py)
for i=1,2.

Just as in the N=-P framework, choice of decision rule in
the Bayesian setting involves minimizing risk., But risk is
now defined as expected loss. We temporarily assume that sam-
ple size is fixed, hence sampling cost is irrelevant in the
choice of decision rule. I use the term "decision risk" to
nean risk exclusive of sampling cost. The decision risk of a
rule d®, where n» O is the fixed sample size, is defined as

the expected loss from using 42 given p:

R(p,a")=E L(p,a™(X)) (40)
For our discrete parameter space, this may be written
R(p,,d" )=E L(pi,dn(X)) for i=1,2 (41)

The Bayes decision risk of 4" is defined as the decision risk
weighted by one's prior beliefs as to p:

r(g,d")=E R(p,d")=E B L(p,a™(X)) (42)
In our case, this weighting is simply the sum over the dis-
crete prior (35). The Bayes principle simply states that, in
a given class ¥ of decision rules, a rule with minimum Bayes
decision risk should be used. That is, let

r<3)§é’g§."(g'dn) (43)
If a decision rule with risk r(g) exists, it is called a Bayes
rule. (Bayes rules are not necessarily unique.)
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To £ind a Bayes rule more explicitly, we rewrite the
righthand side of (42) as follows:
L(p,d™(X))= S {E L(p,a™(x))2%(x;p)} a(p)
=§f§ L(p,a™(x))g™(p;x)n™(x)/&(p)}a(p)
= ;{% L(p,d%(x) )sn(p;x)Smn(x)
:EmBg;on(p,dn(x))
Bs;xL(p.dn(X)) i3 called the posterior decision risk of &%,

BB,
44)

gince, if we have already obtained sample information, we
should take the action that minimizes this risk. Thus, we can
find a Bayes rule by treating x as fixed and comparing the
expected losses of the (two) possible actions. For a), we have
By, L(pya)=32 ) L(p,,a.)8%(p, %)
=L(p, ,a,)8%(p, ix)+L(p,,a, )& (p,ix) (45)
=0+K,, 87 (p,5%)aK,,8™(p,5%)
Similarly, for a5, we find
By, xL(P185)=K) 2" (py %) (46)
Hence, a, is the Bayes action if KZlgn(pz;x)<Klzgn(pl;x).
Substituting for the posterior from (39), we can rewrite this
as
tx;0,) /27 (xip, ) <K; .8, /Ep 8, (47)
The lefthand side of (47) is simply the LR, so the Bayes rule
is an IR test:

if 1%(x,p,,p,)<D
a, otherwise

(48)

where D=K1251/K2132.
¥e proceed to the more difficult question of finding an
optimal fixed sample size n*. The decision rule in (48) holds
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regardless of sample size, provided at least one observation
is made, since no restrictions other than n)» 0 were placed on
n in deriving the rule. The optimal fixed sample size n* is
that n which minimizes overall risk:

r(g,dn)angpL(p,dn(x) .n)sEngL(p.dn(X) )+n (49)
given our assumptions with regard to the loss function. Since
the Bayes decision risk of d%--the first term in the righthand
side of (49)~-~is typically decreasing in n, and the sampling
cost (here, simply n) is clearly increasing in n, the overall
risk is typically strictly convex in n. Hence, there exists
a unique n* minimizing overall risk. The standard calculus
approach to finding this minimum is to treat (49) as being
continuous in n, differentiate, and set equal to zero. But
this method often will fail to yield a closed-form result.
Either an approximation to (49) may be found or numerical
methods used.

To find n*, we must specify (49) in terma of our problem.
By (48), we take action a, if the IR is less than some con-
stant D and take action a, otherwise. Specifying (49) from
the inside out, we have
I.(pl,a.z)}?p{ dn(X)=a2§ if p=p,
L(pa-al)Pp?{ dn(X)=a1§ if p=p,

={K129P1{ 1M(X,p;,p,) 2] 1f p=py
K21Pp2{ ln(x,pl.pa) 'S DS if p=p,
={ Ky (1= & (py)) if p=p;
K, %" (p,) if p=p,

where o®(p) is the 0C function (5) of d®. Using the discrete

n

(50)
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prior (35),
n n n

B B L(p,d7(X))=K) 5(1- 0" (py ) )& Ky X" (py) e (51)
And for the overall risk of decision rule d®, we add sampling
cost:

n

r(g,d%)=K, ,(1- ™ (p; ) )8, +Epy o (p,) g 40 (52)
The OC function is determined by the sampling distribution
of the LR, which is usually not tabled. However, we can min-
imize (52) by numerical methods, working out the sampling dis-
tribution at several points. We use this method in the next

example.

Example 3.4 (continued from Example 3.1). The auditor
specifies decision losses of K12=600 and K21=-l'500, measured
in USCs. Thus a type II error is deemed more than twice as
coatly as a type I error. The auditor also specifies the fol-
lowing prior: g;=.8 and g,=.2. Thus, D=600(.8)/1500(.2)=1.6.
The remaining elements of the problem are unchanged from
Example 3%.1. The overall risk is

r(g,d%)=(480)P 4,{17(X,.01,.05)3 1.6}

+(300)® o{17(X,.01,.05)< 1.6} +n

To evaluate P'OI{ln(x,.Ol,.OS)a 1.6}, select an n, find the
smallest C such that 1%(x,.01,.05)> 1.6, and £ind P o.{S2C}.
The probability under .05 is similarly found to be P c{S<C}
=l—P'05{ Sn'acj. To illustrate how this C is found, we use the
Poisson IR, since Sn is approximately Poisson with q=np. We

have, then,
Q5 -q q,-9
(e 2q2°/0!)/(e lqlc/c!)=e 1 2(q2/ql)caD
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Since all terms are positive, this is equivalent to
q,-95+(C)1og(q,/q,) 2 1og D
That is,
C2(log D + q,-q,)/208(a,/q,)
For D=1.6 and n=100, this gives
C2(log 1.6 + 5 - 1)/log 5=2.78
The smallest integral value, then, is C=3. P ,.{S, .33} and
P.05{3100< 31 can be found (under q;=1.0 and q,=5.0) in the
Poisson tables in Appendir B. They are, respectively, .080
and .125. Results of a search using various n are tabulated

below:
n 100 120 60 80 90
a, 1.00 1.20 .60 .80 .90
a, 5.00 6.00 3.00 4.00 4.50
c 3 4 2 3 3
A (.01) .080 .0%4 .122 .047 .063
% (.05) .125 151 .199 .238 .174
r(g,a®) 176 182 178 174 172

Thus, n* is about 90 with C=3 and Bayes risk of 172 USCs.

It is clear from Example 3.4 that, just as in the N-P
case, the test in (48) may be restated, using the sufficient
statistic mn(x)asn, as

a, 41f T (x)<C
dn(x)= { 1 n
a.2 otherwise

(53)

where C is the critical value of the test.
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The minimization carried out in Example 3.4 is tedious,
but it is, of course, amenable to computer solution, and an
algorithm to find n* and C is provided in Appendix D. Using
this algorithm, we find, for this example, n*=88 and C=3 with
r(g,d%")=r(g)=172.15.

The sample size of 88 obtained in the foregoing example
is not much different from that of the N-P test (n*=95). But
the Bayesian approach provides a considerably altered perspec-
tive. If the losses of 600 and 1500 are approximately correct,
a sample size of 95 with critical value of 3 implies a strong
disposition for Hl' This corclusion cannot be drawn from the
type I risk of .07 and type II risk of .15 found in Example
3.1, although it would appear that Hl is considered more likely.
In the N-P test, the unstated prior and loss offset such that
the auditor set desired risks at .10 and .15. While both of
these factors-=prior distribution and loss function--are
dramatic simplifications of the decision-making process, the
Bayesian construction is significantly richer in context detail.

3.4 Bayesian Sequential Acceptance Sampling

Conceptually, the Bayesian approach to sequential analy-
gis is reasonably clear: at each stage of sampling (or "time")
n, we compute the Bayes risk of an immediate decision; we then
compute the Bayes risk at time n+l, n+2,...; if the Bayes risk
of an immediate decision is no greater than the Bayes risk of
going on (the minimum of the Bayes risks at times n+l, n+2,
«+e), then we should stop and make a decision. Unfortunately,
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when all possible sample sizes are admitted (i.e. an infinite
horizon), the computations typically become unmanageable.

Note that the problem is usually not the terminal deci-
gion rule but the stopping rule. Once we have stopped samp-
ling, the Bayes rule for the appropriate fixed sample size
test is followed. The problem has been solved by limiting
consideration to truncated procedures (those for which a max-
imum number of observations is allowed). Under certain con-
ditions, the Bayes sequential procedure is a truncated proce-
dure, and nothing is lost by this restriction. But, in gene-
ral, the class of all truncated procedures is still too large.
More restricted classes of procedures have been proposed, e.g.
n~gtep look ahead, inner look ahead, and fixed sample size
look ahead. Although Bayes procedures can often be found
within these classes, they typically require considerable
computation at each stage of sampling and, so, are not well-
suited to audit situations.

The SPRT, with its constant bounds, is appropriate to
audit situations, and it is possible to "rationalize" the
classical SPRT to obtain the Bayes SPRT--the minimum risk
SPRT. However, there are two drawbacks to implementing the
Bayes SPRT for audit uses: (i) derivation of the bounds is
rather complicated, and (ii) a reasonable truncation rule is
not obvious (for example, thsre is no longer a necessary con-
nection between the optimal fixed sample size procedure and
the Bayes SPRT, and the expected sample size of tlie Bayes SPRT
may well exceed the optimal fixed sample size). As in the
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classical case, we seek a sequential procedure that is tied
to the optimal fixed sample size procedure. A Bayesian SPRT
truncated at the optimal fixed sample size should be well-
suited to audit needs, and I will propose such an SPRT below.

For various reasons (budgeting, cost to access the samp-
ling frame, etc.), we decide on a fixed sample size procedure
and select the optimal fixed sample size, n*, from the samp-
ling frame. We are, then, in effect, committed to the Bayes
risk, r*, of this procedure. But the observations will be
made sequentially. If at any time n<n* the Bayes risk of an
immediate decision does not exceed r*, we should stop and
make a decision. Otherwise, we continue sampling, eventually
stopping at n* if no decision has been made earlier.

We have already found the Bayes risk r(g)=r* and the
sample size n* of the optimal fixed sample size procedure.
By the equivalence in (44), r* may also be called the expected
posterior Bayes risk at time n*. We now need the Bayes risk
of an immediate decision at time n=1,2,... (Assuming that
n*> 0, the Bayes risk of a decision at n=0 will exceed r*.)
This risk is the posterior Bayes risk at time n. Let gn=
g%(p;x), the posterior at time n. Then the posterior risk
of taking action a at time n is

ro(g",a)=E,, L(p,a,n) (54)
and the posterior Bayes risk of an immediate decision at time
n is the minimum posterior risk:

n ———
(8 )-Q:IéziEg;xL(p,a,n) (55)
Our rule is, then, to stop at the first n such that
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role") < (56)
To implement this rule, we need to specify ro(gn) in terms
of our loss function in (36) and (37):

I‘O(Sno al)'xalgn(pagx)*'n

(57)
ro(e",8,)=K, 6" (py5x)+n
Just as we found in (47) and (48), a, is the optimal action
if the IR is less than D'Klzgl/K2152‘ So,
Kzlgn(p2;2)+n if ln(x.pl.p2)<D (58)

ro(Bn)=' {

In the development, we will rewrite the posterior, using (39),

K, 8%(p, :x)+n otherwise

as

gy xiv,)
glfn(x;pl)+ngn(x;p2)
By (58) and the stopping rule in (56), we take action a, at time
n<n* if ln(x,pl,p2)<D and if

for i=1,2 (59)

g%p ix)=

g,22(x;5p,)
r.(g%)=K 3 2 + nér* (60)
0 Zlglfn(x:pl)vgz;tn(x;pz)
That is, if
£ ixing) ¢ 5;.[ ] A (61)
fn(x;pl) 8, | Ko -T™+n

Now the lefthand side of (61) is just the LR, and we will
show that A<D, hence we may discard the condition 1n(x,pl,p2)
<D.

Note that r*{ min(glKlz,gaxa) if n*>0, otherwise the
risk of going on equals or exceeds the risk of an immediate
decision, and no sempling would be done. We first assume

glK12< 32K21, then, by the definition of 20
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8151 2< (1-g;)K5 (62)
or

8, < Ky, /(K ,+K,, ) (63)
80

81512 <Ky ooy /(8 ) (64)
since 112,121> 0. And, since 0&<r*-n< r*{ &1EK15»

r*-n <K, K, /(K ,+K5, ) (65)
or

(r*-n) (1+(K, ,/K5y ) )< K, , (66)
and

r*-n< K, ,~(K, ,/K5y ) (z*-n) (67)
which we may factor into

r*-n< (Klz/ Kzl) (Kzl-r*+n) (68)

Since r*<K,,, K,,-r*+n>0 and

(r*-n)/(Ey; -r*+n) < K, 5/K5 (69)
Multiplying both sides of (69) by &,/g,> 0 gives the result.
The same result obtains if 31K12> g2K21 (merely substitute
g, for g, and interchange K,, and K, in the first few steps).
It is also easy to see that g1K12=52K21 leads to the same
result.

We now resume development of the test. We take action

a, at n<n* if ln(x.pl.p?_)),D and if

g,22(x;p,)
(%)= 1 L + n&r (70)
o8 Klzglfn(x;pl)-o-gzrn(x;pz) i
That is, if
zing),, &) [52___] .5 (72)
tMxip;) & L r™-n
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The lefthand side of (71) is again the LR, and it may be showm,
in a manner analogous with that of the proof that A<D, that
B>»D, hence we can discard the condition ln(x,pl,pz) > D.

A and B are not the bounds of an SPRT since they widen
slightliy at each sampling stage, reflecting the decreased
opportunity to save sampling cost in making an immediate de-
cision. However, if we treat the sampling cost as foregone,
we replace n with n* and obtain the constant bounds A' and B':

Wy #
A'a El IrT=-n

(72)
o & [El.a_‘.'_*f_]

- phan®
This yields a mcre conservative sequential procedure, since
A'< A and B'>B for all n<n*., The stopping rule in (56),
then, pertains to decision risk only, not overall risk. We
may also justify the use of A' and B' on more substantive
grounds. Assume that there is a significant cost attached
to accessing the sampling frame and selecting the sample.
To obtain a constant unit sampling cost, this fixed cost must
be allocated on the basis of a known sample size, presumably
n*, In this case, use of the variable bounds A and B would
uniderstate the risk faced.
We have arrived at the following sequential procedure:
a, if ln(x,pl,pz)sé.'
a%(x)= a, if 1“(x,pl,p2)>,3' (73)
8y otherwise

Just as in the classical case, we can restate this test using
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the sufficient statistic Tn(x)=Sn and replacing the bounds
A' and B' with acceptance/rejection numbers determined by
the relation in (15). Again, we truncate the test at n=n*
and follow the optimal fixed sample size rule in (53) at this
time. This leads to the following decision rule:
d%(x) if ngn*
d(x)= {

dn*(x) otherwise (74)

a, if Tn(x) $an
a%(x)= a, 122 (x)2r, (75)
8y otherwise
and
dn*(x).—.{al 12 T W(x)LC (76)
8y otherwise
where n* is the sample size and C is the critical value of
the Bayesian optimal fixed sample size procedure.

Note that (74) is a truncated SPRT. Hence we may com-
pute the OC function using (21) and approximate the ASN func-
tion using (32) or (34).

We have found the posterior Bayes risk (the Bayes risk
given x) of d. To obtain the Bayes risk, we must average
the posterior Bayes risk over all possible x, i.e. take the
expectation with respect to m™(x), the unconditional distri-
bution of x. It is easier to reverse the order of expecta-
tions, finding the expected loss with respect to £2(x;p),
the conditional (on p) distribution of x, and then averaging
over p, i.e. taking the expectation with respect to the prior
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g(p). By (44), these two methods are equivalent.
The risk of d depends on the expected sample size as
well as the decision loss:
R(p,d)=E,L(p,a(X),N)
-EP(L(p.d(x))-t-N) (77)
=E L(p,d(X))+E(K)
given the form of loss function specified in (36). Hence,
R(p,,d)=K, (1= op,) )+Ep1(N)
R(p,,d)=K,, o&( p2)+Ep2(N)
where we have simplified notation by using the OC function.

(78)

The Bayes risk of 4 is, then,
r(g.d)=EgR(p.d)
2g,R(p, ,d)+g,R(p,,d) (79)
=8, (K (1~ () )48, (1)) +8,(Ey; ox(p))+E, (V)

Example 3.5 (continued from Example 3.1). From the dis-
cussion just following Example 3.4, we have r*=172, n*=88,
and C=3. The prior end loss are unchanged and are not restated
here. Substituting in (72) gives
A'=(.8/.2)(172-88)/(1500~172+88)=0.237
B'=(.8/.2)(600~-172+88)/(172-88)=24.571
Using the relation given by (15) and keeping in mind that

C=3, the acceptance/rejection numbers are

A8 - S
3 0 2¢ns87 2
7 1 88 3
B8 2
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The OC function is found, as before, using Aroian's (1968)
method (21):
o (.01)=0.954
o .05)=0,266
And, uvsing the ASN approximation in (34),
B g1 (¥)=47.28
B g5(N)=47.20
and, in this case, is exact. The Bayes risk of d is
r(g,d)=.8[(1-.954)600+47.28]+.2 [(.266)1500+47.20]
=.8(74.88)+.2(446.20)
=149.14

It should be noted that the Bayes risk of the truncated
SPRT is less than that of the optimal fixed sample size pro-
cedure (r+*=172). This was, of course, the intention in
deriving the bounds A' and B' for the sequential procedure.
But the decrease in Bayes risk did not result from symmetric
decreases in risk. We compare the fixed sample size and se-

quential procedures in the table below:

fixed samvle size sequential
R(.01,.) 123.76 74.88
R(.05,) 365.71 446.20
E.01(N) as 47
E.OS(K) 88 47

Here we have a result quite similar to the classical case in

Example 3.4: one risk increased while the other decreased
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and ASN decreased in both cases. But here, as opposed to

the classical situation, we have a criterion by whiech to
Judge this tradeoff: 1if we accept Bayes risk as the appro-
priate choice criterion for tests, the truncated SPRT is
superior to the fixed sample size test. However, no claim
is made that the truncated SPRT is optimal among the class

of all procedures truncated at n* using the optimal fixed
sample size rule at that time. Conceptually, we would pre-
fer to find a Bayes rule in this extended class of procedures.
While the definition of a "best" procedure in this class is
not problematic from a Bayesian perspective, the other objec-
tion raised at the end of section 3.2 still holds: <finding
this procedure is contingent on the existence and discowvery

of an efficient search algorithm,

3.5 Summary

The models presented in sections 3.1 through 3.4 are
acceptance sampling models in which the sampling unit can
be classified as an error or nonerror. They are isomorphic
to quality control testing models in which the sampling wnit
can be classified as defective or effective. By analogy .
with the quality coatrol situation, I refer to the models
of this chapter as physical unit acceptance sampling (PUAS)
models. (The motivation for this term will, it is hoped,
become apparent in the following chapter.) Classical fixed
sample size PUAS will refer to the test in (10), classical
sequential PUAS will refer to the test in (17), Bayesian
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fixed sample size PUAS will refer to the test in (53), and,
lastly, Bayesian sequential PUAS will mean the test in (74).
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CHAPTER 4

A STATISTICAL SUBSTANTIVE TESTING MODEL:
MONETARY UNIT ACCEPTANCE SAMPLING

The models presented in Chapter % were restricted to
situations in which the auditor could classify the obser-
vations as errors or nonerrors. We have called these models,
collectively, physical unit acceptance sampling (PUAS). But
there are many audit situatiovas for which a finer classifi-
cation of the observations is needed. Notably, this occurs
in direct tests of balances and transactions (i.e. substan-
tive tests) where the natural measure of error is monetary,
and the degree of error of each cbservation becomes critical.
In the subsequent development, we will extend the PUAS models
for use in substantive teats. I will refer to the provosed
models, collectively, as monetary unit acceptance sampling
(MUAS). The propriety of this name will become evident in
the development. Except as noted in the sequel, we restrict

the situation to a teat for overstatement in an asset balance
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(e.g. inventory). Overstatement means that the book (or re-
corded) value exceeds the true value. The general hypotheses
are,then,

81: the balance is correct (80)

Haz the balance is overstated
The auditor, however, is willing to tolerate some degree of
overstatement before deciding against El In substantive
testing, a tolerable degree of overstatement is termed
immaterial. An intolerable degree is, then, material. Ma-
teriality as used here refers to the working assumption that
some degree of overstatement in an asset balance has no effect
on the decisions of a reasonably prudent user of the financial
statements containing that balance. But some greater degree
of overstatement will affect the decisiona of such a user.

Materiality may be expressed in absolute terms, but it
i3 naturally expressed 2s a percentage of the boock value of
the balance in question. Thus, for example, the auditor may
expect an immaterial rate of overstatement of p=.01l. And
he may decide that the lowest material rate of overstatement
is p=.05. In such a case, the general hypotheses in (80)
may be operationalized as

Hl: p=.01

st £=.05
(I will consistently refer to materiality in percentage terms.

(81)

And, to simplify usage, I will refer to the rate of overstate-
ment as the error rate. This usage will be Justified on its

own merits when monetary unit sampling is introduced below.)



63

Given the hypotheses in (8l1), the PUAS models appear
to be applicable. However, the natural sampling units of
a balance are typically subunits of vurying book value (e.g.
the items or part numbers in an inventory balance). A clas-
gification of these subunits into "materially correct" and
"materially overstated" i1s not sufficient for the decision
required in (81). While it is true that, if no subunit j..s
materially overstated, the balance is not materially over-
gtated, and, if every subunit is materially overstated, the
balance is materially overstated, the necessary relationship
extends no further. The overstatement of just one subunit
may be sufficient for material overstatement of the balance,
provided this subunit is large enough (in book value) rela-
tive to the balance as a whole.

The traditional auditing approach to the problem in (81)
has been the use of various survey sampling techniques to
estimate the true value or, equivalently, the true error
rate. This eatimate is then compared to the book value by
means of a confidence interval. These techniques, grounded
in finite population sampling theory, are essentially non-
parametric, relying on the large-sample behavior of the esti-
mator to construct the confidence interval. (See Roberts
(1978) for applications of this apprecach.) However, studies
by Eaplan (1973b) and Neter and Loebbecke (1975,1977) pro-
vided evidence actual confidence levels could be significantly
lower than nominal confidence levels for typical audit sample
giges in tests on typical accounting populations.
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Another approach is a natural extension of the binomial
model for compliance tests. Following on the notion that a
finer classification of the observations is needed in sub-
stantive testing, Neter et al. (1978) proposed a multinomial
model. While conceptually appealing, this model exhibits
various difficulties attendant on moving from a univariate
to a multivariate model. Among these are choice of test,
power of the test (once chosen), and determinatiion of neces-
sary sample size.

An alternative, univariate, approach is based on mone-
tary unit sampling (MUS). (For simplicity, we will refer
to the monetary units in question as "dollars.") Rather than
employ the natural sampling frame of subunits, MUS ¢reats
the balance as consisting of dollars. These dollars are la-
beled 1,2,...,N, where N is the total book value of the ba-
lance. This is an artificial sampling frame created by the
auditor. It is usually created by ordering the subunits of
the balance and identifying dollars l,...,N1 with the first
subunit (where Nl is the book value of the first subunit),
identifying dollars N1+l,...,Ni+N2 with the second subunit
(where N, is the book value of the second subunit), and so
forth. Other mappings are possible. The observations are
now dollars, which are clasgsified as errors ("defective" dol-
lars) or nonerrors {"nondefective" dollars). The error rate
is now simply the proportion of "defective" dollars in the
balance. In such terms, the PUAS models appear applicable
(i.e. each dollar becomes a physical unit).
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The difficulty in applying the PUAS models lies in the
determination of a defective dollar. Since clients account
for subunits, not individual dollars, this will necessarily
involve an audit of the subunit containing the dollar. (Thus,
viewed as a methed of selecting subunitg, MUS is one form
of probability proportional to size (pps) sample selection,
where the measure of size is book value.) In just two cases
can we be certain whether or not the dollar selected is de-
fective: (i) the subunit containing the dollar is entirely
fictitious, and (ii) the subunit containing the dollar is
entirely sound. But the intermediate cases, in which the
subunit containing the dollar is partially overstated, lead
to an identification problem. For example, consider a dollar
belonging to a subunit that iz 10% overstated. The dollar
selected apparently could be either one of the 10% that are
defective or one of the 904 that are sound. Alternatively,
our rationale in suggesting that PUAS might be applicable
was grounded in the idea of defective dollars (errors) and
nondefective dollars (nonerrors). Is it meaningful within
the context of PUAS to speak of a 10% defective dollar?

In section 4,1, we will restate, in somewhat altered
form, the first solution proposed for this identification
problem. In sectiomn 4.2, I offer an improvement on this
solution and then, in section 4.3, present the results of a

Monte Carlo study using the proposed MUAS models.



66

4.1 Conditional Randomization

The first solution to the identification problem in the
case of partially overstated subunits was given by van Heerden
(1961). To discuss his solution and the altermative, equiva-
lent, solution that we call conditional randomization, we
need additional notation. Recall that we now mean by "error"
a defective or overstated or fictitious dollar and note that
N has been redefined for use in this chapter. We will use
the following notation:

for the population:

N = population size (in recorded dollars)

P = population error rate
K

I = number of subunits in the population, ISN

total errors in the population

for the ith subunit (i=1,...,I):

Nis gize of the ith subunit (in recorded dollars)

py= error rate of the ith subunit

Ki= total errors in the ith subunit

for the sample:

n = sample size (number of dollars selected)

k

total errors in the sample
FProm these definitions, we have the following relations:
for the population:
M= Zia N
K= i &
K = Np (82)
for the ith subunit:

Ki= Nipi
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I will assume throughout that a random sample of size
n is selected with replacement from a population of size N.
Also, for any subunit i, Py is known with certainty if, and
only if, at least one dollar from the ith subunit is included
in the sample.

We are now in a position to describe van Heerden's (1961)
solution. Assume that we select the Jth dollar of the pop-
wlation (L4 J<EN) and that this dollar is contained in the
ith subunit (1£14£I). The ith subunit contains K, errors.

If Ki=0 or Ni' there is no identification problem, hence I
assume that O<Ki< Ni' Van Heerden proposed that we identify
these errors with the high-order dollars in the subunit.

That is, let the ith subunit consist of dollars M—Ni-v-l,M-N j.+2,
ees M (Ni-l$M$ N). We identify M,M-1,... »M-K,+1 as errors.
If M—Ki-i-lé J$ M, we record an error for this observation

and a nonerror otherwise.

Rather than work out the statistical implications of
van Heerden's identification rule, we will consider an alter-
native solution based on conditional randomization. While
these two solutions are probabilistically equivalent, the
conditional randomization construction directly motivates
the improvement offered in section 4.2.

The solution we consider consists of a conditional ran-
domization device (crd) that records an error with conditional
probability pi=Ki/Ni given that a dollar from the ith subunat
has been selected, this selection having been made at random

with replacement from the population of N dollars. Tuc crd
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is invoked after the dollar is selected and represents a

second layer of randomization. Here is an example of the
use of a crd. The jth dollar (14 j$n) in our sample belongs
to the ith subunit. We observe an error rate of pi=.5 in
this subunit. An appropriate crd is the toss of a fair
coin, recording an error for heads and a nonerror for tails.
We now examine the consequences of using conditional random-
ization.

Let YJ represent the possible outcome of the crd for
the jth sample dollar. More precisely, let

Y.= (83)

J

for j=1l,...,n. We are interested in the distribution of the

1 1if the erd records an error for the jth dollar
{0 otherwise
{YJE. Note that, since we are sampling at random with re-
placement, the {Yﬂ are independent, identically distributed
random variables. Let Y be a random variable with the same
distribution as ‘IJ, j=lyeee,t. And let A:I. be the event that
a dollar from the ith subunit is chosen and B be the event
that the crd records an error. Then we have
P{¥=1} =P{U Ta(nNB}
=¥ P{a,N B}
=¥ 2iBlade{al
= Z i1 (K /8,) (N, /N)
= Z1 K/
=K/N=p
The sscond step in (84) follows since the {AiﬂBE are

(84)

pairwise disjoint events. That P{BlAi} =K, /N, follows from
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the definition of the crd. And ?{Ai§=Ni/N follows from the
fact that we are sampling at random with replacement from a

population of N dollars. It follows from (84) that

P{Y=0}=1-p (85)
and, since Y is an indicator variable, we have immediately
E(Y):P{Y:l} =p (86)

with variance
Var(¥)=E(¥Y2)~(E(Y))?
=p(1-p)
The {Yd} are independent, identically distributed binomial(l,p)

(87)

random variables. Hence,

S = Z?::J.Yj ~sbinomial(n,p) (88)

Thus, use of a crd conforming to our definition of such
a device extends the PUAS models for use in subsgtantive tests
as characterized in (80). (To see that van Heerden's rule
yields the same result, simply define B in (84) as the event
that the dollar selected is defective.) It is of some impor-
tance to note that, by invoking the crd at each sampling stage
n=1,2,..., the FUAS sequential plans may be implemented.

Before proceeding to discuss an improvement on this so-
lution, we should pause to note that van Heerden's rule, or
use of a crd, made available, for the first time, a parametric
test of (80), with known risks under the control of the audi-
tor and independent of any large-sample theory. It is a sig-
nificant achievement in the history of audit sampling, for

which van Heerden has not received due credit.
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4.2 An Alternative to Conditional Randomization

There are both behavioral and statistical objections
to the use of a crd. Behaviorally, there appears to be a
general abhorrence of randomized rules for nontrivial deci-
sions. While such a behavioral objection is of practical
importance, there is a more substantive objection to the use
of conditional randomization in the case at hand. If a crd
is used, certain information is discarded. Prior to selecting
a dollar from the ith subunit, the error rate Py of that
subunit is unknown. DBut, once we have selected a dollar that
belongs to the ith subunit, Py is known with cexrtainty. The
crd discards this information in favor of a 1 (with probabil-
ity pi) or a O (with probability l-pi). Consider the degen-
erate case of a population with only one subunit (I=1). Here,
P1=py and, after selecting one dollar, we know p with certainty.
Using a crd, we will select n dollars, randomize for each,
and record k errors. Unless p=0 or 1, use of the crd has
introduced decision risk where there need be none (i.e. k/n
is identically equal to p only if p=0 or 1). This argument
suggests that we can improve on the crd by basing our decision
on all the information available, i.e. all known {pif.

In the following construction, it will be necessary to
modify the notation of section 4.1 slightly. We group to-
gether all subunits in the population with identical subunit
error rates. We assume that there are H{I distinet {p,}.

We label <these Q» h=1l,...,H. And we define Ih as the set
of subscripts in {l, oo ,I} for which Py=Q},« Then let
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¥ = N
* iZ:Ih i
(89)

= K
Khi‘:‘-Ihi

Note that Z§=J.Mh=N and Z§=1Kh=1{ since the { Ih'ﬁ form a par-
tition of {1,...,I}.
Let XJ, j=1l,.+.,n, be the jth random subunit error rate.
The {XJ} are independent, identically distributed random
variables. Let X be a random variable with the same distri-
bution as xj. j=1,...,n. Then
P{X=q,}=M /N (90)
and the expected value of X is
BX)=T 1 q, (M /)
= ¥ B2 (/M) (/) (s1)
= BN

=K/N=p
with variance
Var(X)=E(X?)-(E(X))2
=E(X2)-p? : (92)
=FH a2 /N)-p?
Since 0<q, <1 implies that qf&4q,, (92) implies that

Var(X) £ p(1-p) (93)
Let

8p=2 ja1%; (94)
Then we have

#5g)=ne (95)

Var(S))=n(Var(X)) < np(1-p)
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Thusa, SA has the same expectation as Sn (defined in (88))
but has lower variance except in the extreme case of only
two distinct {p,}, O and 1. To see that S! achieves its
maximum variance under these conditions, note that H=2
and let, say, q;=0 and g,=1. Substituting in (92) we have
var(X)= 2 _ o2(, /M) -p?

=(M,/N) -p

=(E,/N)-p? (96)

=P‘P2

=p(l-p) if p;=0 or 1 for i=l,...,I
.Under these conditionms, SA/\Jbinomial(n,p), i.e. 8)=8.
Furthermore, S! achieves its minimum variance if all {pi}

are equal, that is,

Var(X)=0 if p =p for i=1,...,I (97)

4.2.1 Fixed Sample Size MUAS

These results suggest that we obtain a conservative
fixed sample size test as follows. We derive necessary
sample size n and critical value C based on the conditional
randomization model, that is, we plan the test based on Sn.
In conducting the test, however, we substitute Tﬁ(X):SA
for Tn(x)=8n. This is not quite as straightforward as
it may aprear. Since Sﬁ is a continuous random variable

(except in the degenerate cases of (96) and (97)) and C is
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integer-valued, the decision rule
if a' C
a"(x)ad 1 n (98)
a, otherwise

(where aﬁ:ﬂ.‘ﬂ(x)) is equivalent to the rule
it ! c
d”(x)-{al e (99)

a, otherwise
vhere [w] is the largest integer £ w. Since [s;ljss;l.
E([S!'Il) $E(S))=np, and we introduce systematic bias in our
statiatie. The appropriate continuity correction is .5, with
the rule
if s! £C-.5
a(x)ay T T ®aS (100)
8, otherwise
or, equivalently,
a, if E'sz'l+.5]<c
a, otherwigse

d'(x):{ (101)

The continuity correction is usually associated with the nor-
mal approximation to the binomial distribution (see Bickel
and Doksum (1977) p. 464). Here, we are discretizing S; and
attempting to preserve (approximately) its unbiasedness.
(If the density of S; is constant on each interval (k,k+1),
k=0,...,n~1, then E([3!+.5])=E(S!)=np. In this case, E([S}I)
=np=.5.)

It may appear simpler to work with Sﬂ directly rather
than substitute it in a test based on Sn‘ The difficulty
is that the exact diatribtution of Sﬂ is not known. As the
sum of independent, identically distributed random variables,

tha central limit theorem gives an approximate distribution. The
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quality of the approximation will depend on the population
tested. However, we can use the normal approxiamtion to
compare the nominal decision risks (of d(x) using Sn) and
the true decision risks (of d'(x) using sr'x)'

In the following, § denotes the normal(0,1l) distribu-
tion function, and z(b), 0< b<1l, denotes the value such that
$(z(b))=b. We first consider type I risk:

-np -np, -
By (3,2 o8y [ Ik __1._§

JVar ( n’ 7 (S.)
c ; (102)
=D~ =
231-Pf ———— |2l D(z(1=0) )= oL
-
(See, for exampla, Bickel and Doksum (1977) p. 170 for use
of the continuity correction in this situation.)
3! -npl (;'-npl -.5
P, {S¢20C-.5 =Py
o 5 (103)
AP, =,
31| —tte— V=1-P(z(1- o¢'))= L
m)) § z2(1- ¢'))= o
Since Var_ (3!')¢Var_ (S ), and assuming & <& .5, 0< z(1l-o¢)
Py 'S 7pn
£2z(1- '), hence '$ . Similarly,
C-np
Py s, < s —-—3-—) =B(2(3))=f3 (104)
PH{S'<C- 5; § ) §(z( B'))=4" (105)

Then, since Varpz(sx'l) $Varp2(sn), and assuming /3< .5, z(R")
£2(R)L0, hence 3'£A3.
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If the normal approximations hold, these results esta-
blish the risk reduction claimed for d'(x). We will call
the test based on S in (101) fixed sample size monetary unit
acceptance sampling (MUAS). In the following section, we
will extend MUAS to sequential sampling.

4,2.2 Sequential MUAS

The extension of fixed sample size MUAS <to sequential
teating is quite straightforward. At each sampling stage n,
we have, in the sequential PUAS models, integer-valued accep=-
tance and rejection numbers (a_ and T respectively) such

n
that we reject Hl it 8,27, and accept Hl if 9,88, and con-
tinue sampling otherwise (up to n*). In replacing S, with
sx'l, we make the following continuity corrections: reject

Hl ifr sz'1>’rn'°5 and accept Hl irf sr'zsan""s and continue samp-
ling otherwise. Now, 8!3>r -.5 if and only if [sl'1+.5]>,rn.
And s <a,+.5 if and omnly if [s;l+.5]<~an. (We are entitled
to ignore the possibility that s£=an+.5-) Hence, at each
stage n, we substitute [S&-&-.S] for S as the test statistic.

We have, then, the following decision rule for sequential

MUAS:
a*(x) if n<n*
a(x)=1 . (106)
d" (x) otherwise
where
a, if [st'l-o-.s'ls a,
a?(x)= a, 1if [81'1""5]21'11 (107)

a.j otherwise
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and

. if [8'+.51<C
at (x)= {al Lep* 5 (108)

a, otherwise

where n* is the sample size and C is the critical value of
the optimal fixed sample size PUAS procedure.

We have obtained apparently conservative substantive
procedures, sequential and fixed sample gize, asg follows:
we derive necessary sample size and critical value based on
S,~binonial(n,p); in performing the test, we substitute S;
for S, by discretizing S! according to the rule [S!+.5].
When S'=S identically, as in compliance testing, [S)+.5]=S,
identically, and, so, the test mechanics of MUAS can also
be used for PUAS. The degree of conservatism depends, at
least in part, upon the degree to which Var( Sn)=np(l-p) over-
states Var(sz'l). A Monte Carlo study was performed both to
provide empirical support for the claim of conservatism and
to assess the degree of conservatism under plausible audit
circumstances. The study is described in detail, and the
results reported, in section 4.3. These results indicate
that MUAS is quite conservative under conditions that may
well be considered typical, given our limited knowledge of
audit populations in general. The principal drawback of
conservative tests is inefficiency, i.e. excessive sample
size. The use of sejuential MUAS should serve to reduce
this inefficiency to acceptable levels in many audit testing

gituations.
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4.3 Monte Carlo Study of MUAS

The Monte Carlo results presented below provide some
empirical support for the claim of conservatism for the
monetary unit acceptance sampling (MUAS) plans, as well as
some measure of the degree of conservatism under plausible
audit substantive testing conditions. In the case of Bayes-
ian MUAS, the study also provides some evidence for the ade-
quacy of model construction. It should be emphasized that
a systematic robustness, or sensitivity, analysis is not
contemplated. Rather, the performance of MUAS under a plau-

sible, but constrained, set of circumstances is examined.

4.3.1 Description of the Study

The study population used is an adaptation of Neter and
Loebbecke's (1975) population 4. The principal characteris-
ties of the atudy population are presented in Table 4.1.
There appears to be only one characteristic typical of ac-
counting vopulations: relative frequency is a decreasing
function of subunit size (in monetary value). Although the
study population is an abstraction of an actual accounts
. receivable population, it could easily represent inventory,
fixed agsets, or accounts payable. Actual accounting popu-
lations exhibit a wide variety of subunit sices. Since MUAS
places no constraint on subunit size, only nine sizes are
used, thereby reducing the cost and time needed to generate

teat populations from the study population.
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Test populations are created by randomly seeding rela-
tive errors in subunits of the study population in accordance
with one of ten relative error distributions. We will need
to distinguish the mean and variance of the relative error
distribution from the mean and variance of the test popula-
tion. The terms "relative error mean' and "relative error
variance" will be reserved for the former quantities, and
"error mean" and "error variance" will be used for the latter.
The relative error distribution consists of positive relative
errors only, while the error distribution (test population)
is a mixture of positive relative errors (which follow the
relative error distribution) and zero relative errors (a
constant). For each relative error distribution, two test
populations, with error means ¢f .01 and .05, are generated.
The following relative error distributions are used:

(1) reverse J--low and high variance (denoted by "low J"

and "high J" respectively)

(2) reverse J with 100% relative errors--low and high

variance ("low J-100" and "high J=100" respectively)

(3) unimodal--low and high variance

(4) uniform

(5) degenerate at .3, .5, and .8 (i.e. three distribu-

tions exhibiting constant relative errors)
In addition to these 10 distributions, a control distribution
(in which all relative errors are O or 1, i.e. the relative
error distribution is degenerate at 1) is used to provide

empirical results on nominal risks, since, in this case, the
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error distribution (under MUAS) is truly binomial. In all
cases, the desired error mean (.0l or .05) is attained by
varying the proportion of subunits overstated.

There is limited empirical evidence on relative error
distributions in accounting populations. Johnson et al. (1981)
report a variety of distributions. Distributions (1)=(4)
have been used in several Monte Carlo studies (e.gz.

Roberts et al. (1982) and Leitch et al. (1982)). The
degenerate distributions have not been used in other audit
studies and are discussed below.

Theorstical distributions are used to model the nonde-
generate relative error distributions. The intent here is
to produce an approximate shape and predictable properties
rathe? than accurately simulate any given theoretical distri-
bution. The test population generator developed for this
study induces relative errors in accordance with the frequen-
cies of a cumulative distribution function (cdf). The cdf
may be specified more accurately by increasing the number
of points, Xgr Xyreeey at which the cumulative frequency is
given. Between any two such points, Xy and X1 the rela-—
tive errors are wniformly induced. The test population gene-
rator is listed in Appendix E, and input data for each test
population is given in Appendix F.

The J distributions are modelled on gamma distributions.
(See Appendix A for all of the theoretical distributions men-
tioned in this section.) The low J is approximately an
exponential(10), i.e. a gamma(l,10). The high J is based on
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a gamma(.25,2.5). These theoretical distributions have a
mean of .1 and variances of .0l and .04, respectively. Due
to truncation at 1.0, the high J distributions have variances
of about .03. The J-100 distributions are modelled in the
same way but with the addition of independently induced 100%
relative errors. For these distributions, about 20% of the
total error is attributable to 100% relative errors. The
choice of 20% is somewhat arbitrary. Johnson et al. (1981)
do not report this statistic directly. However, they do re-
port the proportion of relative errors that are 100% errors.
Since they found no significant correlation between error
amount and relative error, the proportion of 100% relative
errors should be a reasonable surrogate for the proportion
of total error due to 100% relative errors. (Parenthetically,
the lack of significant correlation found in the Johnson
gtudy supports the random approach to relative error induection
used in this study and others.) Of the high error populations,
Johnson et al. report that 7 of 10 of the accounts receivable,
and 10 of 10 of the inventory, populations exhibit 20% or less
100% relative errors. Thus, 20% appears to be a reasonable
choice. The low unimodal is based on a normal(.5,.01), and
the high unimodal is based on a normal(.5,.03). The uniform
distribution is approximately a uniform(0,1).

These distributions form three mean-variance groups:
J, J=100, and unimodal-uniform. Within each group, the rela-
tive error mean is approximately constant and the relative

error variance increases. DBetween groups, the relative error
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mean increases. Histograms with summary statistics (relative
error mean and variance) for these relative error distribu-
tions are presented in Figures 4.1-4.7. Each figure consists
of two parts: part A depicts the distribution when the error
mean is .0l, and part B depicts the distribution when the
error mean is .05. (Although the same cdf is used in both
cases, there are slight differences beéause the distributions
were independently induced in the two cases.) More detailed
data on the resulting test populations is given in Table 4.2.

The degenerate distributions exhibit constant relative
error of .3, .5, or .8. These distributions are discrete
and may be transformed to obtain exact fixed gample size tests.
They are included here to assess their impact on sequential
MUAS.

All tests are of the following problem:

Hl: p=.01

32: p=.05
Hl repredents an immaterial (but positive) level of overstate~
ment. H2 represents the lowest level of overstatement consi-
dered material in the audit literature. Six classical tests
are conducted. (The tests are labeled 1.1 through 1.6, where,
if used, "F" refers to the fixed sample size test and "S" to
its sequential counterpart.) These tests differ in level and
power approximately as given in Table 4.3. Exact nominal
level and power for each test are given in Table 4.4. (Nomi-
nal risks are computed assuming the maximum error variance,

Table 4.3 gives the target level/power for the fixed sample
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size tests. The exact level/povwer given in Table 4.4 repre-
sents the best approximation to the target level/power with-
out randomizing over decision rules.) The choices of level/
power were influenced by Elliott and Rogers (1972). They
recommend setting level from .05 to .10 and setting power
at .95, .90, .85, .70, or .50, depending on the assessed
quality of internal control. The low powers of .70 and .50
are not included in the classical tests. However, one of
the Bayesian tests (2.6F) effectively has power of about

«50 and provides some evidence for low power tests. Sample
gizes for the sequential tests are given in Table 4.5. The
theoretical values are based on the approximation in (33).
Observed values are based on 2500 replications on the control
distributions.

Six Bayesian tests (2.1-2.€) are conducted. These tests
vary only in specification of the prior distribution as in-
dicated in Table 4.6. Given the loss specification (discussed
below), these teats cover the available range, since a prior
of .3 or less for Hl results in a no-sample decision to reject

H That is, the lowest prior, gl=.4, is effectively as ex-

1
treme as the highest, gl=.9. The loss function is specified
at K, ,=600 (type I loss) and K,=1500 (type II loss), where
losgses are measured in unit sampling costs. The particular
loss specification used is not critical to this study (if it
yields reasonable sample sizes). This is so because the per-
formance of the Bayesian procedures is assessed in terms of

average observed loss. Also, given the sample size, it is the

ratio of losses that affects the decision. Type I loss of 600
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based on the following reasoning. Examination of the 600
largest subunits of the study population will cover approxi-
mately 80% of total book value. I assume that, if an audi-
tor rejects Hl and fails to find a material error after exami-
ning 80% of book value, he will not pursue the matter further,
concluding that Hi was, in fact, true. Type II loss of 1500
was arrived at indirectly by answering the question of how
much an auditor would be willing to do to forego a type II
decision error. (Kinney (1975a) suggested this approach to
tyve II loss specification.) Since a purposive examination
of the largest 1500 subunits will cover about 95% of book
value, an auditor would presumably be unwilling to do more
than this, assuming a materiality level of 5%. On the other
hand, he could not do less and still guarantee reduction of
the error to an immaterial level, assuming no knowledge of
the distribution of relative errors in the population. Im-
plicit in this specification is the notion, generally accepted
in the audit profession, that a type II decision error is
more serious than a type I decision error.

Exact nominal risks for the Bayesian tests are given
in Table 4.7. Theoretical and observed sample sizes for the
sequential tests are given in Table 4.8.

All tests, except those on the contronl distributions,
are replicated 500 times. (Control distribution tests, per-
formed to obtain observed nominal values, are replicated 2500
times.) In general, this degree of replication allowed suf-
ficient precision for the hypotheses of interest (discussed



below). It should be noted that the tesmts were performed
simultaneously on each of the 500 samples from the various
test populations., This facilitates comparison among tests
8ince differences observed from test to test are not caused
by sampling variation. Furthermore, the fixed sample size
tests are performed by carrying out the sequential tests to
n=n%*, Thus, the fixed sample size results indicate precisely
the risks that would have been incurred if we opted for the
fixed sample size test instead of the sequential in each situ-
ation. This facilitates comparison between fixed sample size
MUAS and its sequential counterpart.

Results are presented graphically and in tabular format
for the relative conservatism of the various tests. Relative
conservatism is defined as

ch=(nominal risk-observed risk)/nominal risk
and measures the degree by which nominal risk overstates
(ch> 0) or understates (ch< 0) actual risk when p is the
error mean. For example, RG.OI=.2 indicates, in this study,
that observed type I risk is 20% less than nominal risk. In
the Bayesian tests, the measure of risk used to RCp is R(p,d)
as defined in (78). For the sequential tests, expected sample
8ize is not neceasarily known exactly. 7To overcome this dif-
ficulty, observed ASN is used 10 calculate nominal risk.

The efficiency of sequential MUAS is also considered.
Three measures of efficiency are presented. The first is
relative efficiency, which is defined as

REp=(n*'-ASN)/n*
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where n*=optimal fixed sample size and ASN=(observed) average
sample size, REp measures the expected savings in observa-
tions over the fixed sample size procedure when p is the error
mean. Note that, given the truncation rule adopted in MUAS,
Rquao. Since sample size is quite variable in the sequen-
tial tests, two other measures of efficiency are presented.
The second measure is max(REp), where ASN is replaced in the
RE ratio by the minimum observed sample size for a correct
decision. Max(REp) is the upper bound on the relative effi-
ciency of sequential MUAS. The lower bound is zero. A more
informative statistic is the proportion of truncated decisions
(PTD), which measures how often REP is zero. Since ASN did
not vary significantly over distributions, only results for

the control distributions are presented.

4.3.2 Hypotheses of Interest

We are primarily interested in the relative conservatism
of MUAS when carried out on plausible error distributions.
I have contended that the actual risks of MUAS are bounded
by the nominal risks based on the maximum error variance dis-
tribution. Thus, we expect to reject, for all nondegenerate
relative error distributions, the following hypotheses:

Hl: Rc’01<o

H2: RC.05< 0
where RC_ is the relative conservatism of the MUAS procedure

p
when p is the error mean.
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The degenerate relative error distributions are special
cases, These distributions vioclate the assumption of MUAS
that the test sgtatistic, SA, ig continuous. No particular
hypotheses are entertained with respect to these distributions,
and the results are discussed separately.

It should be noted that efficiency as well as conserva-
tism should be considered in evaluating sequential MUAS: a
gain in efficiency may offset a loss in conservatism. How-
ever, noc formal hypotheses are entertained with respect to
the efficiency of sequential MUAS. Descriptive statistics

on relative efficiency are presented and discussed.

4.3.3 Discusaion of the Results

The results of the Monte Carlo study are presented in
several figures and tables. The first group--Figures 4.8-
4.1%3 and Table 4.9--pertains to the classical tests on the
nondegenerate relative error distributions (J, J-100, unimodal,
uniform). Within this group, each figure is a graphical pre-
gentation of the results (based on 500 replications) for the
relative conservatism of one test. Each figure has two parts.
Part A reports sequential MUAS results, and part B reports
fixed sample size MUAS results. Each part is divided into
upper and lower sections. The upper section reports results
when p=.01 (H1 true), and the lower section reports results
when p=.05 (H2 true). Table 4.9 reports the numerical re-
sults that support these graphs.
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The second group--Figures 4.14-4.19 and Table 4,10--
presents results on the relative conservatism of Bayesian
MUAS for the nondegenerate relative error distributions in
the same format as that of clasaical MUAS.

The third group=--Tables 4.1l and 4.l2--present results
on the efficiency of sequential MUAS. 4.1l pertains to
classical, and 4.12 to Bayesian, MUAS.

The last group--Tables 4.1% and 4.1l4--present results
on the relative conservatism of MUAS for the degenerate rela-

tive error distributions.

4.3.3.1 Conservatism of Classical MUAS

The results for Hl and H2 are presented in Figures 4.8
-4.13 and Table 4.9. It should be noted that, for the one-
sided hypotheses of interest, the "95%" lower confidence limit
in the figures is actually a 97.5% confidence limit. If this
limit does not include O, the hypothesis may be rejected at
leasgt at the .0265 level. More exact significance levels can
be found from the data in Table 4.9. Based on the figures
and Table 4.9, we conclude that

(1) H1 may be rejected (p-value< .00l) for all rela-

tive error distributions except the uniform;

(ii) for the uniform distribution, there is strong
evidence (p-value €.0l) against HL for tests with
low nominal type I risk (tests 1.1-1.3) and some
evidence (p-value < .1l5) against Hl for tests with
high nominal type I risk (tests 1.3-1.6); and
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(1ii) H2 may be rejected (p=-valus <.001l) for all rela-
tive error distributioms.
An important concern here is the effect, if any, of relative
error distribution on ch. It is clear from the figures that
ch tends to decline from the low J to the uniform distribu-
tion. 3Jince the relative conservatism of MUAS is predicated
on an error variance less than the maximum, we predict an
inverse relationship between ch and error variance. The
maximum error variances are .0099 and .0475 if p=.0l and
p=.05, respectively. The error variances of the test popu-
lations are given in Table 4.2. The results tend to confimm
the prediction. There are anomalies--such as the high Rc.OJ.
asgociated with the low unimodal distribution--but the results
are not inconsistent with an ordering based on error variance.
The varying test results suggest two conjectures. First,

for any given distribution, RC p is decreasing (not constant)
in nominal risk. Thus, for high nominal risk, we may observe
low relative conservatism. For Rc.Ol’ wve may compare tests
1.1 and 1.4, 1.2 and 1.5, or 1.3 and 1l.6. For RC.OS’ we may
compare tests 1.1, 1.2, and 1.3, or 1.4, 1.5, and 1.6. (The
nominal risks are given in Table 4.4.) The second conjecture
is that RC_ is not symmetric in the hypotheses, that is, for

p
equal nominal risks, RCP> RC oy " Nominal risks are not exactly
2

1
equal in any of the tests. But we may look at test 1.5F and
1.48, where the nominal risks are quite close. For these
two tests, we find only one case in which Rc.01> RC 05° In

most cases, RC 05 appears to be significantly higher than RC o1°
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4.3.3.2 Conservatism of Bayesian MUAS
The results for Hl and H2 are presented in Figures 4.14
-4,19 and Table 4.10. The results are somewhat mixed. The
following conclusions pertain to sequential MUAS., Slightly
stronger conclusions may be drawn for fixed sample size MUAS,
but the pattern is much the same.
(1) H1 can be rejected (p-value<.00l) for all distri-
butions except the high unimodal and uniform;
(ii) Hl can be rejected (p-value £.00l) for the high
unimodal distribution for all tests except 2.183;
(1ii) H1l cannot be rejectzd for the uniform distribution;
(iv) H2 can be rejected (p-value £.001) for all distri-
butions for all tests except 2.63; and
(v) there is at least weak evidence (p-value £.04)
against H2 for test 2.6S for the low J and unimodal
distributions, but H2 cannot be rejected for test
2.68 for other distributions.
As in the classical case, MUAS fared worst. in general, against
the highest error variance, i.e. the uniform distribution.
But with Bayesian MUAS we have two tests that did not exhibit
congservatism on one or more distributions. Both of these
tests have high nominal risks under one of the hypotheses,

The OC functions of these two tests are given below:

2.18 2.1F 2.63 2.6F
(,01) .721 .754 .974 .954
X(.05) .049 .050 .670 .493

The level of test 2.1 considerably exceeds that of any of
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the classical tests in this study. Similarly, the power

of 2.6 is far lower than any other test. (Note that, for
2.68, it is merely .%30.) Thus, these results are consistent
with the conjecture that ch declines in nominal risk. It
should be noted that, relative to nominal risk of 2.1F, the
the increase in nominal risk of 2.1S for the wiform distri-
bution is rather insignificant. However, for 2.6S, this is
not the case, since the nominal type II risk of 2.63 is con-
giderably in excess of that of 2.6F.

There is some evidence, then, that sequential MUAS may
be more sensitive to prior misspecification than fixed sample
size MUAS. In defense of sequential MUAS, it should be noted
that both 2.2S (the minimax test) and 2.3S are relatively
more conservative than their fixed sample size counterparts
for all distributions but the uniform, for which there is
no significant difference. And, since these two sequential
procedures have lower nominal risks than the corresponding

fixed sample size tests, they are clearly superior.

4.3.3.3 Efficiency of Sequential MUAS

Results on relative efficiency in Tables 4.11-12 are based
on the control distributions. Observed ASNs for the other rel-
ative error distributions are within +11% of the control ASNs,

and relative efficierncy results are essentially the same.

In general, it is apparent that greater efficiency is
attainable under H2 than H,. Under HZ’ the saving can be

dramatic, since rejection can occur after only a few
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cbservations. For the classical tests, REp is a decreasing
function of nominal risk. For the Bayesian tests, REP in-
creases as the prior is more correctly specified. When the
the prior is significantly incorrect (e.g. test 2.1 for p=
.01 and test 2.6 when p=.05), REP is no longer meaningful
since the sequential test terminates with the incorrect de-
cision too frequently. I have omitted the REp measure in
these cases because the apparent savings are spurious.
Sample size of sequential MUAS. varies rather broadly.
Although not reported here, the standard deviation of the
sample size is usually from 30% to 50% of ASN., However, the
average savings of sequential MUAS over fixed sample size
MUAS, when p=p, OTr p=ap,, appear to be significant (from 40%

to 60%).

4.3.3.4 Results for the Degenerate Distributions

The degenerats distributions used in this study exhibit
constant relative error of .3, .5, or .8. Results on the
relative conservatism of MUAS for these distributions are
reported in Tables 4.13 and 4.14.

Degeneracy in the relative error distribution violates
the assumption of MUAS that the test statistic, Sﬁ, is con-
tinuous and invalidates use of the continuity correction.
For example, if the distribution is degenerate at .5, we would
normally require two observations of overstatements before
recording an error (.5+.5=1). However, with the continuity

correction, one occurrence is sufficient to record an error.
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For fixed sample size tests, it ia easy to transform the
problem to obtain an exact test. For sequential MUAS, the
effects are not apparent.

To illustrate the needed transformation, consider the
degenerate .5 distribution. Test 1.3F has a critical value
of 4, hence it 19 necessary to observe 7 occurreaces of
overstatement in order to reject ((7)(.5)=3.5+.5 for the
continuity correction). Transform the error rates as follows:
P{=py/.5=.01/.5=.02 and p}=p,/.5=.05/.5=.10. Then test 1.3F
is risk equivalent to the following test 1l.3F':

Hl= p'=.02

KZ: p'=.10
with n*=95 and C=7. The nominal level and power of test 1l.3F'
are .0l2 and .954, respectively. Then the expected value
of RC ,, for the test is (.034-.012)/.034=.647. (The nomi-
nal value .034 is taken from Table 4.4.) This expected wvalue
is within half a standard deviation of the observed value of
.585 in Table 4.13. Similarly, we find Rc.05=.695 which is
within one and a half standard deviations of the observed
valuve, .77S.

By this method, we may assess the impact of degeneracy
on fixed sample size MUAS. 1t is clear that it may cause
ch to go negative (e.g. test 2.1F for the degenerate .5 dis~
tribution).

The error variances for test populations with degenera-
cies may be computed from (92) as Var(X)=p(p'-p), where p'
is the point of degeneracy. They are given in the table
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below for the degenerate distributions tested and for the
control distributions (degenerate ot 1.0):

Point of Degeneracy

3 .5 .8 1.0
p=.01 .0020 .0049 .0079 .0099

By comparing these variaaces with those of Table 4.2, we see
that a degeneracy at .3 is comparable to the low J distri-
bution, .5 is comparable to the high J=-100, and .8 is more
variable than the uniform. However, except for p'=.3, the
results here are rather different from those for the compara-
ble nondegenerate distributiona. We would expect ch to de-
cline as p' increases. And this occurs in, say, test 1.1l.
However, a different pattern is obserred in 1.5 and 2.6.
Furthermore, similar shifts in p' can produce both signifi-
cant and insignificant changes in ch. For example, in test
1.2, for p=.01, the shift from .3 to .5 produces a dramatic
drop in RC'p while the shift from .5 to .8 has an insignifi-
cant effect.

It would appear from Tables 4.13 and 4.14 that the ef-
fects of degeneracy on sequential MUAS tend to follow the
effects on fixed sample size MUAS. If this is true in gen-
eral, it is at least possible to predict the effect of any
&iven degeneracy on sequential MUAS from the expected effect
on its fixed sample size counterpart. It would, then, also
appear that any significant increase in risk due to degeneracy

will be in type I risk.
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In developing MUAS, I have assumed that degeneracies of
the type tested here do not occur in accounting populations.
Although presumably rare, they could occur due to a systematic
bookkeeping error. For example, a clerk could systematically
understate purchase discounts in a scheme to abstract funds
from the employer. This could result in a constant error rate
for overstated inventory items. Under these circumstances,
it would seem that, depending on the parameters of the MUAS
test, the auditor's type I risk might exceed the nominal risk.
This is not a particularly discouraging result, since, in the
event of rejection, the auditor will, in fact, search for
sources of systematic error. A4nd, while the error may not be
material in the current period, its discovery and correction

may forestall a material error in future periods.

4,3.4 Other Conaiderations

In this section, we will consider the power function of
MUAS and its implicationa with regard to choice of test. For
the time being, I limit the discussion to classical tests.

We have restricted MUAS to the testing of simple hypotheses.
This is an admitted simplification of the problem. The error
rate p can lie anywhere in the interval from O to 1. Consider
the alternative test

H: p<p*

H? p;p*

where p* is a material error rate. In the N-P framework, we

(209)

cannot conduct a reasonable test of (109) as it stands. This
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80 because, if type II risk at p=p* is ﬁ » then, as p appiocaches
p* from the left, type I risk approaches 1-/3. This difficulty

is removed if we are willing to use an indifference zone. That

ia, we introduce a p'< p* such that, if p'< p<p*, we are indif-

ferent to the decision made. Thus, we control type I risk at

p' and type II risk at p*. Since the power function is mono-

tonically increasing in p, these are the maximum risks we face

for p<p' and p2 p*, respectively. Thug, (109) is equivalent to
": pap'

2;3 - (110)
And, letting plsp' and p2=p*, we arrive at the MUAS construction.

While use of simple hypotheses, if interpreted in this way,
does not represent a constraint in the N-P framework, we must
nevertheless consider the performance of MUAS when p is not
one of the two hypothesized values.

We will consider the power function of only one test (1.l)
for only two relative error distributions (low J and uniform).
However, this should be adequate to indicate the general nature
of the power function of MUAS. The empirical power of test
1.1 (fixed sample size and sequential) ageinst various values
of p from .005 to .07, based on 500 replications, is given in
Table 4.15. The observed average sample sizee (ASN) are also
&iven there. The theoretical power assumes a binomial error
distribution (all relative errors equal O or 1). The empiri-
cal power functions of 1.1lF are plotted against the thec;;-;{:;-
cal power function in Figure 4.20, The power functions of 1.18
(which are not plotted) would be shifted slightly to the right.
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From Figure 4.20, it is clear that the effect of nonde-
generate relative error distributions is a rotation of the
theoretical power counter-clockwise with, perhaps, a small
shift to the left. (To simplify description, we will call
the p such that (3(p)=.50 the midpoint of the power function.)
Based on the performance of MUAS at P=p; and P=p, for the var-
ious relative error distributions tested earlier, it is rea-
sonable to conclude that the power functions for high J, low
J=100, etc. lie between those for the low J and the uniform.
It is also reasonable to conclude that a decreasing error
variance tends to increase the slope of the power function
near its midpoint. (In the 1imit, when the error variance
is zero, the power function jumps from 0.0 to 1.0 in the
vicinity of the theoretical midpoint.) The location of the
midpoint, then, is of some importance in choosing an MUAS test.
In addition, we observe that the ASN for nondegenerate distri-
butione tends to exceed the theoretical bound when p1< P <p2.

For p near the midpoint, the sequential sample size will equal
the optimal fixed sample size fairly often, particularly for
low error variance distributions. While this has implications
for the choice of sequential MUAS test, it must be kept in
mind that sequential MUAS is being advanced as a means of early
detection of outliers, i.e. p<p1 or P> Poe.

In a recent paper, Duke et al. (1982) compared the power
functions of several statistical substantive t¢st procedures.
Their results are not directly comparable with those in Table
4.15 because they test pl=.00 versus p2=.02 and control either
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type I risk at p, or type II risk at Py but not both. Further,
for reasons to be discussed, p=.02 is usually an unrealistically
low alternative. Temporarily adopting the notation used by
Duke et al., let M be a material error rate. As constructed
by these authors, a goocd tast would exhibit a power function
rising from & at p=M-e to 1-( at p=M for some small e. In
particular, they require e {.5M. Unfortunately, for reason=-
able values of M, o, and R (say, £.l), this comstraint will
yield very large sample sizea. In fact, such a constraint

may lead to the conclusion that a purposive sampling plan de-
signed to cover 100(1-M)% of book value is preferable to a
random sampling plan. (This is, for example, probably the
case if we set M=.02, since then .5M=.01l, and it is clear

that very large sample sizes are needed to discriminate with
reasonable accuracy between p=.0l1 and p=.02, if the sampling
is et random.)

We will consider the power characteristics of MUAS along
the lines of the Duke et al. conatruction but with the fol-
lowing modifications: (i) materiality will be treated as an
interval, rather than point, concept, and (ii) purposive samp-
ling of large subunits in the population will be allowed. The
Duke et al. discussion is incomplete in these two areas. In
addition, they do not address the impact of multiple tests on
the design of a particular component test. This problem has
two dimensions. The first is the impact of compliance tests
on subsequent substantive tests. The second is the impact of

other substantive tests on a particular substantive test. This
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area has been the subject of research. But it is a complex
problem, discussion of which would carry us far afield, hence
we, too, will consider only the isolated test.

All discussions of audit materiality with which I am
familiar have recognized the difficulty of establishing a
"threshold" of materiality. For example, Mautz and Sharaf
(1964, p. 105) refer to "borderline assertions" that are "more
than immaterial but less than definitely material." The reluc-
tance of standard-setting bodies to incorporate quantitative
materiality rules is an implicit recognition of this grey area
(see FASB, 1980, Appendix C). PFor purposes of formal develop-
ment, we have taken P, a8 the material error rate. But it is
unrealistic to assume that an auditor is able to specify a
material error rate M such that M-e is immaterial for some
small e, Rather, it \is reagonable to suppose that an auditor
is able to specify, for a given population, an error rate M°
that is marginally material and an error rate M* that is cer-
tainly material, with M'< M*, There are at least two objective
interpretations of these error rates. The first is that, in
the auditor's Jjudgment, the decisions of gome reasonable users
of the financial statements'would be affected by knowledge of
an undisclosed M' error rate in the population, while the de-
cisions of all reasonable users would be affected by knowledge
of an undisclosed M* error rate. A second interpretation, more
in accord with current legal views on materiality, is that there
is a moderate likelihood that the decisions of a reasonable

user would be affected by knowledge of M' but virtual certainty
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if the error rate is M*, In addition, I assume the auditor

is able to specify an error rate m that is certainly immater-
ial, That ia, an undisclosed m error rate would affect no rea-
sonable user, or there is virtually no likelihood that it would
affect a reasonable user. Although it is possible that m> 0,

I will assume that m=0.

The value of this construction lies in its implications
for the choice of test. We have immediately that mg4 p; < M'« Py
& M*, Further, we are able to characterize the desired power
function to some degree. We require that (i) the power against
m is quite low, (ii) the power againat M' is moderate (since
ve are rather indifferent about detecting a marginally material
error rate), and (iii) the power againast M* is quite high. If,
as agreed, we set m=0, then A(m)=0.0 in all MUAS tests, hence
we need not be concerned with the power function at this point.
(This is not true for all statistical substantive procedures.)
A pover function rising from about R(M')=.50 to 3(M*)=.99
might satisfy the remaining requirements. If we set equal de-
cision risks (i.e. /&(pl)=l-ﬁ.(p2)), then choosing p, and p,
equidistant from M' should yield (3(M')%.50. (Since there
will typically be considerable latitude in the choice of Py
and Pos the use of equal decision risks is not particularly
constraining, but, regardless, we are only suggesting one
possibility for specifying the test in a reasonable manner.)
Beyond this, choice of 12 and P> represents a tradeoff. A
relatively smaller indifference zone is usually preferable,
especially for sequential implementation, but optimal fixed
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sample size is quite sensitive to the size of this zone., We
will return to this question later.

In the following example, we take M'=.02 and M*=2M'=.04.
A reasonable choice for p, is p2=(M'+M*)/2=l.5M'=.O3. Then
if we set pl=.5M'=.01. M' will be roughly the midpoint of the
indifference zone, if equal decision risks are used. This
corresponds to the Duke et al. setup except that we treat p=.02
as marginally material. If we set k=pR(.01)<.l and 1-A=
A(.03)2 .9, we arrive at n=320 and C=6 as the best test. The
theoretical power function of the (fixed sample size) test at

sovaeral points is presented below:

o8 o

.0075 .035
.01 .104
.015 +349
.02 .618
.025 .812
.03 .919
0035 .969
004 . 989
.05 «999

This plan provides considerable ultimate protection against
M*=,04 even if we face a binomial error distributiomn. If, on
the other hand, a low error variance distribution is encountered,
the power function will be quite steep in the vicinity of p=.02,
A (.01) will be significantly lower than .104, and (Q(.03) will
be significantly higher than .919.

We now allow purposive sampling of large subunits. We
let q be the proportion of book value covered by the purposive
sample. It is clear that, if M is a material error rate prior

to purposive sampling, then M"=M/(1-q) is material subsequent
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to the purposive sample (i.e. for the random sample of the re-
maining subunits). This can have a significant impact on the
statistical test. For the example above, we transform the
parameters and recompute the necessary sample size for various
values of q. (For consistency, we also let pj=p,/(1-q) and
similarly for pj.)

B« I, - M 1P M* 2 c
.00 .01 .02 .03 .04 320 6
.33 015 .03 .045 .06 205 6
.50 .02 .04 .06 .08 160 6
.75 .04 .08 .12 .16 8 6

Now, g=.75 may seem unrealistically high. However, our study
population is based on Neter and Loebbecke's (1975) population
4 in which the "very few" excluded aubunits (those cver $25,000)
accounted for 75% of book value. Neter and Loebbecke excluded
these subunits precisely because they assumed they would be
purposively selected by an auditor (Neter and Loebbecke, 1975,
P. 25). In the only other complete population used by these
researchers, population 3, the excluded subunits accounted for
33% of book value.

It is clear that purposive sampling of large subunits
can dramatically reduce the necessary size of the random sample.
Furthermore, based on the high degree of skewness in the dis-
tribution of subunit size typically found in accounting popu-
lations (e.g. Neter and Loebbecke (1975), Johnson et al. (1981)),
it would appear that purposive sampling of large subunits will
often significantly impact the statiastical teet of the remaining

subunits.
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Before turning to Bayesian MUAS, we will pause to recon-
gider test 1.1 and the question of choice of Py and Py- Given
the theoretical power function in Table 4.15, test 1.1 is ap-
parently appropriate if M'=,03 and M*=.06, which is the situ-
ation in our example for g=.33. However, in test 1.1, we set
® &3 *.05 with p,=.01 and p,=.05 rather than « = R%.10 with
p1=.015 and p2=.045. For the latter test, the indifference
zone is smaller, but the optimal fixed sample size is larger.
A brief comparison of their theoretical power functions is

given below:

_ G(p) __
P n=182 n=205
.005 .002 .001
.01 037 .018
.015 .142 .090
.02 . 301 .229
.03 .640 .581
.04 .856 832
.045 «916 +903
.05 .952 +946
.06 .986 .985

The latter test provides better protection against a type I
error at the cost of larger sample sizes if .015< p<.045.
This kind of tradeoff must be assessed by the decision-maker.
We now consider the relation of Bayesian MUAS and the
power function. Pirst, the Bayesian framework does not help
in the choice of P and ) PR But, given Py» Por and M', Bay-
esian MUAS gives an alternative, and perhaps superior, means
of choosing sample size. Assume that, in the event of rejec-
tion, a purposive sample covering 100(1-M')% of book value
will be taken. Assume further that this is also what the
auditor would "pay" to forego a type II error. Thus, K12=K21=K.
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Of course, K is decreasing in M'., Given the same parameters
as our classical example, a table of the comparable Bayesian
testa is given below. The value of K is based on our study
population (Table 4.1), i.e. for M'=,02, it is necessary to
examine approximately 2250 of the largest subunits to cover
98% of book value, etc. The prior for Hy is .5 for all tests.

-9 Py M Pa ) K n c
.00 .01 .02 .03 04 2250 248 5
.33 015 .03 .045 .06 2000 202 6
.50 .02 .04 .06 .08 1800 178 7
.75 .04 .08 .12 16 1300 115 9

From a Bayesian perspective, it would appear that our classi-
cal test for gq=.00 is too conservative and for q=.75 is8 too
liberal, for our study population. Note, however, that the
Bayesian construction is directly sensitive to the skewness
of subunit size in the population through the specification
of K (in USCa), regardless of the value of q. But the classi-
cal construction is sensitive to thias skewness only indirectly
through the aspecification of q.

Finally, it must be observed that the test in (109) does
not reduce to that in (110), in the Bayesian approach, with-
out some arbitrary simplification. To teast (109) would require
asgessing a continuous prior (or reasonable discrete analog
thereof). This constitutes a well-studied behavioral difficulty.
Beyond this behavioral difficulty, there is a nontrivial in-
crease in technical complexity. Given the uncertainty of the
benefita to be derived, I have adopted the position that the
gsimplified construction should be shown defective before the

more realistic construction is embraced.
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4.4 Summary
In this section, we will reiterate rather generally the

strengths and weaknesses of MUAS and also discuss some issues
that were deferred in order to keep the de‘veIOpment reasonably
uncluttered.

The Montes Carlo study temds to support the use of MUAS
in substantive testing for overstatement in asset balances.
in general, the claim that the actusl risks of MUAS are bounded
by the nominal risks based on a binomial error distribution
holds for the nondegenerate relative error distributions con-
sidered in the study. Indeed, if the error variance is signi-
Ticantly less than that of the binomial error distribution
(as would typically be the case for certain gsmma-type relative
error distributions), MUAS is quite conservative. That is,
the nominal risks, based on the binomial error distribution,
will significantly overstate the actual risks at the hypothe-
sized error rates (1:ol and p2) . For other values of the error
rate, the effect of low error variance distributions is easen-
tially a counter-clockwise rotation of the power function for
the binomial error distribution about the midpoint of the in-
difference zone, with the result that the true power function
may be significantly steeper than the nominal power function
in the vicinity of the midpoint.

There is both analytic and empirical evidence that gamma-
type, low error variance relative error distributions occur
frequently in accounting populations. The anlytic evidence
is based on the following kinds of argument. Positive relative
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errors occur more or less uniformly on the unit interval in
the accounting process, however, the effectiveness of accounting
controls imposed by an entity's management is an increasing
function of the magnitude of the relative error. Thus, such
controls operate as a filter, converting, say, a uniform
relative error distribution into a gamma-type distribution.
Alternatively, the accounting process, with controls, may be
viewed as yielding a normal (positive and negative) relative
error distribution (truncated at 1 on the right), with zero
mean and variance depending on control effectiveness. The
positive relative errors, then, follow a gamma-type distribu-
tion. Empirical evidence for such distributions is mainly
derived from the limiteéd number of accounting populations
described by Johnson et al. (198l1),

However, from both analytic and empirical viewpoints, it
would appear that 100% positive relative errors may be inde-
pendently generated. Johnson et al. found several populations
with high proportions of such errors. And Duke et al. (1982)
suggest that one fraud strategy is the use of entirely fic-
titious subunrits to achieve a material overstatement in the
population. Thus, reliance on an assumption that relative
errors follow a gemma-type distribution (e.g. Cox and Snell
(1979)) does not appear warranted without considerable investi-
gation of the robustness of such an assumption against high
error variance populations. That is, it would appear that
auditors must use procedures that are conservative under

typical circumstances in order to obtain nominal protection
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in atypical circumstances. MUAS is such a procedure.

The principal drawback of conservative procedures is
excessive gample size. Sequential MUAS has been advanced as
a reasonable solution to this dilemma. When the true error
rate p is either significantly better or woxrse than expected,
sequential MUAS will typically detect this fact at moderate
sample sizes. Furthermore, these moderate sample sizes will
be attained without adopting an unrealistic model (e.g. use
of discovery sampling when some positive erxror rate is both
expected and tolerable) or sacrificing power against material
error rates. Sequential MUAS, then, is beat viewed as a acheme
for the early detection of "outliers" (i.e. p<p; or p>p,).
(Elliott (1976) first advanced this view of sequential audit
tests.) If p<p;, the client should not be burdened with
excessive sampling cost since he has performed better than
auditor expectations. If P> Py excessive sampling is again
unwarranted, but for the reason that audit resources are bdet-
ter expended to assist the client in remedial work on the
balance in question. However, when pl< P<P,» the situation
is not so clear, and the auditor may very well need additional
sample information in order to make a reasonable decision on
how to proceed if indeed Hl is rejected. A primary drawback
of the SPRT is the potentially large sample 8ize that may be
required under these circumstances. Hence, the truncation
rile adopted in sequential MUAS (stopping at the optimal fixed
sample size if no decision is made earlier) is an important

component in the applicability of sequential tests in auditing.
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The performance of sequential MUAS 4is more or less sen-
sitive to other factors considered in the Monte Carlo study.
The following matrix indicates, in a qualitative way, the
utility of sequential MUAS.

efficiency effectiveness
P£P; P2, P<Py P2 P,
low error good ! excellent | excellent ! excellent
low variance ! !
nominal -—-—:-—-—_ _____ ; _____
risk high error | 054 |excellent | good | good
variance ) )
1l l .
oW error | sair | good excellent | excellent
high variance | )
nominal il ===
)
risk high error | .4, |  good fair | good
variance i )

The availability of sequential implementation is, perhaps,
the principal advantage of MUAS over current statistical audit
methodology. However, there are other advantages. MUAS is
the firat statistical substantive procedure cast entirely in
the testing framework. Although confidence procedures can
be used to make decisions, the terminology and construction
of statistical tests is a more natural framework for audit
testa. Moreover, MUAS is derived from PUAS and thus unifies
statistical auditing (compliance and substantive) conceptually
in terms of a readily accessible ciscrete probability structure
(the binomial distribution). Not only does this unification
8implify implementing statistical testse in an audit, I hope
that MUAS will significantly facilitate statistical audit
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pedagogy.

The ready availability of a "worst case" power function
for MUAS is also a distinguishing feature. That is, in the
event that a binomial error distribution is encountered (which
is emssentially the "worst case" for MUAS), the auditor can
easily compute the power against any error rate or consult
binomial or Poisson tables. This should be of asaistance to
the auditor in choosing an appropriate test. The power func-
tion of a sequential MUAS will be somewhat different than that
of the corresponding fixed sample size MUAS test. However,
the power of the sequential test can be computed, and I have
provided an algorithm for this purpose. This algorithm should
be efficient for typical audit sample sizes.

A major contribution of Bayesian MUAS is a new sequential
procedure appropriate for audit usc. In addition, the Bayesian
construction of MUAS incorpcrates certain simplifications
over previous Bayesian models proposed for audit testing. In
developing Bayesian MUAS, I have adopted the simple construc-
tion of a two-point parameter space and discrete prior under
the assumption that a simple construction should be shown
defective before more complicated constructions are espoused.
The Monte Carlo study performed here does not directly address
this question, but there is no evidence in the Monte Carlo
results of defective construction. In fact, Bayesian MUAS
appears reasonably robust against prior misspecification, a
worrisome aspect of Bayesian models. Against values of p other

than those hypothesized, Bayesian MUAS shares the power
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characteristics of classical MUAS,

Simplified construction is also evident in the choice of
loss function and scale. Use of the unit sampling cost (USC)
as the loss scale should ease the implementation of Bayesian
MUAS over botk different audit clients and different testing
situations for the same client. (The usefulness of this scale
was apparent in the discussion of Bayesian tests in section
4.%.4 above.) And we have excluded any cost to access the
sampling frame (startup costs). This is a one-time fixed cost
(not, as Kinney (1975, p. 123) claims, a fixed cost that will
be incurred at each sampling stage). It will be incurred re-
gardless of the decision taken, if any sampling is done. Hence
it affects only the decision of whether or not to sample. This
decision is based only in part on the startup costs. An attempt
to formalize this decision at the testing level appears counter-
productive.

We now consider some of the (real or apparent) deficiencies
of MUAS. I have assumed throughout that, in the event of re-
Jection, remedial work on the population will be performed by
the auditor or the client (or both). Some auditors have advo-
cated the use of stochastic adjustments, i.e. a proposed adjust=-
ment to the population book value based on a statistical esti-
mate of the true value (see, e.g., Loebbecke and Neter (1975)).
Although I do not advocate the use of stochastic ad justments,
MUAS does provide an unbiased estimate of the population error
rate, namely, Sz'z/n' Further, an unbiased estimate of the var-

iance of the estimator s;l/n is available (Cochran (1977, p. 308)).
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Large-sample confidence intervals using this variance estima-
tor have not proved egpecially accurate when few errors are
encountered (Neter and Loebbecke (1975)), primarily because

the variance estimate is zexro if no errors are found. However,
a8 stochastic adjustment would be needed only if Hl is rejected.
This typically will require observing several errors. Thus,
large-sample confidence intervals constructed only when Hl is
rejected may be rather accurate. These conditional confidence
intervals will differ from the usual unconditional intervals
which, if used in these circumstances, would have lower than
nominal coverage probability. Wwhile it is possible to compute
the appropriate conditional interval, if we are interested only
in the upper confidence bound (UCB), then the unconditional UCB
will lie to the right of the conditional UCB in MUAS tests, and,
80, the unconditional upper confidence coefficient will be at
least as large as the conditional coefficient. Hence, use of
an unconditional 100(1-0()% UCB on p may be viewed as a conser-
vative approximation to the conditional UCB. (See Meeks and
D'Agostino, American Statistician (May 1983), p. 134-136. Note
that their objections to the use of conditional intervals re-

lates to the behavior of the lower confidence bound.)

Both in PUAS and in MUAS, we have used sampling with re-
placement. In a labeled finite population, sampling without
replacement is generally superior. However, by assuring in-
dependent and identically distributed random variables, random
sampling with replacement considerably simplifies the proba-
bility structure of a sampling plan. In fact, in sampling
with unequal probabilities of selection (as in MUS viewed as a
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subunit selection method), the analysis in the case of sampling
without replacement becomes quite complex (Cochran (1977, p.
308f£f)). This complexity has led some (e.g. Duke et al. (1982))
to use sampling with replacement for MUS procedures and others
to use sampling without replacement but analyze the results

as if the observations were independent (see discussion in

Cox and Snell (1979)).

While I have used sampling with replacement primarily to
simplify the analysis, I will offer an alternative defense for
its use. In MUAS, if two or more dollars are selected from
the same subunit, each dollar counts as a valid observation,
but the subunit need be audited only once. Thus, it is only
necessary to tag sample dollars from the same subunit at the
time the sample selection is made. But, if we use sampling
without replacement, this is precisely what we must do to
avold duplicate choices, if the sampling is at random. (Since
the probabilities of selection are unequal, it is not sufficient
to coerce the random number generator into pasaing over dupli-
cates. That is, two different numbers may still select the
same subunit.) Thus the cost of random sampling with and with-
out replacement in MUAS is essentially the same. (A systematic
sampling scheme does not require tagging, however, such a plan
introduces additional analytic difficulty and the need for
additional assumptions.) In PUAS, on the other hand, we have
used sampling with replacement because the populations involved
are usually large and the probability of duplicate selection
is quite low. Here, although the preferable scheme is well
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understood (requiring use of the hypergeometric instead of the
binomial distribution), the added complexity provides little
benefit.

A final disadvantage of MUAS is its failure to address
the problem of understatement in liabilities and assets.
(Overstatement of liabilities, while not usually a concern of
an independent auditor, may be treated by MUAS as it stands.)
Understatement of liabilities, which leads to an overstatement
of income, is a major concern of independent auditors. However,
no statistical procedure currently available to auditors ade-
quately deals with this problem. The difficulty is the lack
of a reasonably complete sampling frame. In the case of accounts
payable, for example, the balance itself cannot be assumed to
be complete, since omissions of entire subunits are not only
possible but probable. To apply MUAS we must find a reasonably
complete frame. For example, if the client 's payables turmover
is about 6, and the cash disbursements system is reliable, the
first 60 days' disbursements in the subsequent period may serve
as a frame for the testing of accounts payable. In this situ-
ation, valid disbursements are those for debts arising subse=
quent to year-end or for debts recorded in accounts payable
at year-end. Invalid ("overstated") disbursements are those
for debts arising before year-end but not listed in accounts
payable at year-end. These "overstatements'" will lie in the
unit interval, and the test may proceed as with asset balances.
The understatement of assets, as the overstatement of liabili-

ties, is usually not the concern of independent auditors., A
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statistical test again depends upon finding a reasonably com-
plete frame (for example, the last 60 days' sales in the period
for an accounts receivable balance). While any understatements
observed in the course of an MUAS test for overstatement can
be corrected, the theory does not permit netting thoa= against

observed overstatements.
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TABLE 4.1
Study Population Characteristics

Total Book Value: 8,988,750
Number of Subunits: 4,000
Digtribution of Subunits by Size:

r

Subunit Size Relative Cumulative
(in dollars) Frequency Freguency Value
75 1050 .26 78750
150 700 .18 183750
300 450 11 318750
600 350 .09 528750
1200 450 11 1068750
2400 400 .10 2028750
4800 150 .04 2748750
9600 250 .06 5148750
19200 200 05 8988750

Totals 4000 1.00
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TABLE 4.2
Summary Statistica of the Test Populations

Error* Partial Tainting” _100% Tainting*
Distribution Mean Variance Dollars Subunits Dollars Subunits

Low J .0095 .0019 .0809 .0808 - -
High J .0100 .0031 .1024 .1160 - -
Low J-100 .0104 .0035 .0928 .0723 .0023 .0015

High J-100 .0097 .0048 .0768 .0853 0025 .0028
High Unimodal .0103 .0049 .0247 .0133 -— -

Uniforn .0104 .0068 .0203 .0170 - -
Low J .0501 .0068 .500% .4978 - -
High J .0498 .0166 .4801 .4980 - -

Low J=-100 .0496 .0160 . 5800 «3793 0115 .0110
High J-=100 .0497 .0239 4213 .4255 0121 .0125
Low Unimodal .0500 .0236 .0998 .1100 - -
High Unimodal .0497 .0253 .0986 .092% - -
Uniform .0504 .0303 .1043 .1040 - -

*error mean=error rate as given in (91), i.e. p=K/N
error variance=Var X as given in (92)

*a "tainted" subunit is one that is partially or 100% in error;
these columns measure the proportion (relative to total book
dollars) of dollars in tainted subunits and the proportion
(relative to total subunits) of tainted subunits
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TABLE 4.3

Classical Tests Performed in the Study

le =,01 vs. HZ: p=.05

Tegt Level* Power* Sample Size Critical Value

1.1 .05 .95 182 5
1.2 .05 .90 134 4
1.3 .05 .85 120 4
1.4 .10 .95 155 4
1.5 .10 .90 107 3
1.6 .10 .85 94 3

*target nominal risks; since the underlying distribution

is diacrete, these target risks are not exactly attainable
(without randomizing over decision rules); exact nominal
risks for the classical tests used are given in Table 4.4



117

TABLE 4.4

Nominal Risks of the Classical Tests

Thgorgtical(Z) Observed(3)

Teat(l) Level Power Level Power
1.1F .038 .948 041 ,950
(.004) (.004)

1.2F .047 .901 .046  .907
(.004) (.006)

1.3F 034 .849 036  .847
(.004) (.007)

1.4F .072 .950 .066 .956
(.005) (.004)

1.5F 094  .902 .088 .895
(.006) (.006)

1.6F .070 .848 .066 .845
(.005) (.007)

1.18 039 .930 .040 .926
(.004) (.005)

1.28 .046 ,870 .044  .860
(.004) (.007)

1.38 .031 .800 .035 .787
(.004) (.008)

1.48 076 .935 .065 .935
(.005) (.005)

1.58 092 .87 .087 .86l
(.006) (.007)

1.68 .066  .808 .065 .795
(.005) (.008)

(l)F=fixed sample size, S=sequential

(a)for fixed semple size tests; risks calculated using Poisson

approximation to the binomial; for the sequential tests,
risks calculated using the binomial by the method in (21)

(3)based on 2500 replications on the control distributions;
the standard deviation is shown in parentheses
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TABLE 4.5

Sample Sizes of the Clasaical Tests

Note: observed average sample size (ASN) is based on 2500
replications on the control distributions; standard
deviation of the ASN is less than 1.0 for all tests

ASN
gggng"' Observed
Test _n* p=.01 p=.0% = p=,0
1l.1 182 105 82 102 78
1.2 134 79 70 76 64
1.3 120 64 62 64 62
1.4 155 100 68 96 62
1.5 107 69 47 69 48
1.6 94 57 46 57 47

*computed using the approximation given by (33) in section 3.2;
the results are exact for tests 1.3, 1.5, and 1.6
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TABLE 4.6

Bayesian Tests Performed in the Study
Hy: p=.01 vs. H,: p=.05

Test Prior for Hl Sample Size Critical Value

2.1 .4 95 2
2.2 5 120 3
2.3 6 112 3
2.4 7 102 3
2.5 .8 88 3
2.6 .9 34 2

Note: loases of K12=600 and 121=1500 are used in all tests;
ses Table 0.6 for the nominal risks of these tests
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TABLE 4.7

Nominal Risks of the Bayesian Tests
Hl: p=.01 vs, HZ: p=.05

Tgeo_r_etica;( 2) Observed(”

rest‘l)  R(.01) R(.05) R(.01) R(.05)
2.1F 242.51 169.62 234,92 171.80
(5.07) (6.79)

2.2F 192.31 212.95 184.32 210.00
(3.71) (7.12)

2.3F 174.19 235.58  168.40 232.00
(3.50) (8.14)

2.4F 152.41 276.72 150.00 286.80
(3.26) (10.53)

2.5F 123.76 365.71 122.56  375.40
(2.80) (11.80)

2.6F 61.74 773.87 64.00 776.20
(2.61) (15.00)

2.18 237.89 105.93 230.20  114.40
(5.30) (6.80)

2.28 162.39 154.07  158.40 159.00
(3.93) (7.77)

2.38 135.42 206.36 129.28 215.60
(3.48) (9.36)

2.48 106.68 293.90 104.48 313.20
(3.08) (11.35)

2.58 75.50 449.88 77.20  477.40
(2.57) (13.52)

2.68 28.83 1024.03 29.24 1021.00

(1.92) (14.13)
(l)F--rixed sample size, S=sequential

(Z)Rgp):.-R(p,d) as given by (78); for fixed sample size tests,
E(n)=n* and the Poisson approximation to the binomial is
used; for sequential tests, the observed ASN is used for
BE(n) and the binomial distribution is used by means of (21)

(S)based on 2500 replications on the control distributions;
the standard deviation, shown in parentheses, is computed
assuning the ASN is fixed at the observed quantity
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TABLE 4.8

Sample Sizes of the Bayesian Tests
Hl: p=o°l vsa. sz p=.05

Note: observed average sample size (ASN) is based on 2500
replications on the control distributions; standard
deviation of the ASN is less than 1.0 for all tests

ASN -
Bound* Obsgserved
Test a* p=.0} p=.05 p=.01 p=.09%
2.1 95 69 30 69 31
2.2 120 85 47 84 48
2.3 112 74 48 73 49
2.4 102 62 49 61 49
2.5 88 47 47 47 47
2.6 34 13 15 13 15

+compu.ted using the approximation given by (33) in section 3.2;
the results are exact for all tests



Table entries:
of the ratio RC=(nominal risk-observed risk)/nominal risk

Test
1.18

1l.23

1.38

1.48

1.58

1.68

TABLE 4.94

Relative Conservatism of Classical Sequential MUAS
le p=.01 vs. HZ: p=.05

122

mean and standard deviation (in parentheses)

Distribution
J=100 Unimodal Uniform
P Low High Low High  Low High
.01 1,000 0,900 0.849 0.799 0.900 0.749 0.498
(0.000) (0.071) (0.087) (0.100) (0.071) (0.112) (0.157)
.05 1.000 1.000 1.000 0.939 0.816 0.785 0.693
(0.000) (0.000) (0.000) (0.043) (0.075) (0.081) (0.096)
.01 1.000 1.000 0.870 0.783 0.913 0.696 0.479
(0.000) (0.000) (0.075) (0.097) (0.061) (0.114) (0.149)
.05 1,000 0.969 0.954 0.877 0.724 0.678 0.678
(0.000) (0.022) (0.027) (0.043) (0.064) (0.069) (0.069)
.01 1.000 1.000 O.87L 0.806 0.871 0.612 0.548
(0.000) (0.000) (0.091) (0.112) (0.091) (0.157) (0.170)
.05 0.990 0.830 0.920 0.710 0.710 G.579 0.519
(0.010) (0.041) (0.028) (0.052) (0.052) (0.062) (0.066)
.01 0.974 0.816 0.816 0.657 0.868 0.578 0.157
(0.026) (0.069) (0.069) (0.094) (0.0%9) (0.104) (0.144)
.05 1.000 1.000 1.000 1,000 0.784 0.814 0.753
(0.000) (0.000) (0.000) (0.000) (0.081) (0.075) (0.087)
.01 0.978 0.761 0.718 0.718 0.718 0.653 0.176
(0.022) (0.071) (0.077) (0.077) (0.077) (0.085) (0.129)
.05 1.000 0.968 0.951 0.838 0.773 0.773 0.643
(0.000) (0.023) (0.028) (0.051) (0.060) (0.060) (0.074)
.01 1.000 0.848 0.696 0.696 0.878 0.605 0,240
(0.000) (0.068) (0.095) (0.095) (0.061) (0.108) (0.148)
.05 0.990 0.875 0.886 0.761 0.688 0.657 0.553
(0.010) (0.03%6) (0.034) (0.049) (0.055) (0.058) (0.065)
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TABLE 4.9B

Relative Conservatism of Classical Fixed Sample Size MUAS
le p=.01 vs. Hz: p=.05

Table entries: mean and standard deviation (in parentheses)
of the ratio RC=(nominal risk-observed risk)/mominal risk

Distribution
Jd J=100 Unimodal Uniform

Teat _p_ Low High Low Ligh Low High

.01 1.000 0.894 0.789 0.736 0.894 0.789 0.578
(0.000) (0.075) (0.105) (0.117) (0.075) (0.105) (0.148)

.05 1,000 1.000 1.000 0.923 0.845 0.729 0.729
(0.000) (0.000) (0.000) (0.055) (0.077) (0.102) (0.102)

1.2F ,01 1.000 0.958 0.830 0.788 0.915 0.703 0.491
. (0.000) (0.042) (0.084) (0.094) (0.060) (0.111) (0.145)

.05 1.000 0.960 0.939 0.858 0.696 0.696 0.717
(0.000) (0.029) (0.035) (0.053) (0.077) (0.077) (0.075)

1,3F .01 1.000 0.941 0.822 0.822 0.882 0.704 0.645
(0.000) (0.059) (0.102) (0.102) (0.084) (0.132) (0.144)

.05 0.987 0.788 0.894 0.643 0.709 0.563 0.563
(0.013) (0.052) (0.037) (0.067) (0.061) (0.073) (0.073)

1.4F .01 0.972 0.806 0.806 0.722 0.861 0.584 0.167
(0.028) (0.073) (0.073) (0.087) (0.062) (0.106) (0.147)

,05 1,000 1,000 1.000 1,000 ©0.800 0.761 0.800
(0,000) (0.000) (0.000) (0.000) (0.089) (0.097) (0.089)

1.5F .01 0.979 0.765 0.658 0.594 0.722 0.615 0.145
(0.021) (0.070) (0.084) (0.091) (0.076) (0.089) (0.130)

.05 1,000 0.959 0.939 °0.817 0.776 0.735 0.653
(0.000) (0.029) (0.035) (0.061) (0.067) (0.073) (0.083)

1.6F .01 1.000 0.828 0.684 0.655 0.828 0.655 0.253%
(0.000) (0.070) (0.094) (0.098) (0.070) (0.098) (0.143)

.05 0.987 0.856 0.856 0.737 0.724 0.632 0.606
(0.013) (0.043) (0.043) (0.058) (0.059) (0.068) (0.070)

b
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Relative Conservatism of Bayesian Sequential MUAS
Hl: p=.01 vs. 32: p=.05

Table entries:
of the ratio RC=(nominal risk-observed risk)/nominal risk

3

est _p_
.18 .01

n
[¢/]

.05

2.28 .01

.05

2.38 .01

.05

2.48 .01

.05

2.53 .ol

.05

2.63 .01

Distribution

mean and gtandard deviation (in parentheses)

J=100 Un

Low

High

Low

High Low

odal
High

Uniform

0.461
(0.029)

0.776
(0.000)

0.424
(0.014)

0.732
(0.000)

0.422
(0.012)

0.771
(0.000)

0.415
(0.000)

0.808
(0.000)

0.381
(0.000)

0.845
(0.C09)

0.538
(0.045)

0.15%
(0.032)

0.334
(0.037)

0.737
(0.000)

0.293
(0.033)

0.702
(0.000)

0.311
(0.033)

0.738
(0.015)

0.315
(0.033)

0.786
(0.014)

00319
(0.033)

0.675
(0.034)

00344
(0.097)

0.015
(0.031)

0.211
(0.043)

0.730
(0.000)

0.270
(0.035)

0.702
(0.000)

0.286
(0.035)

0.741
(0.015)

0.290
(0.036)

0.773
(0.017)

0.246
(0.046)

0. 743
(0.027)

0. 519
(0.044)

(0.031)

0.193 0.247
(0.044) (0.042)

0.702 0.653
(0.000) (0.053)

0.270  0.327
(0.036) (0.031)

0.628  0.560
(0.034) (0.053)

0.274  0.309
(0.038) (0.034)

0.658 0.598
(0.035) (0.048)

0.281 0.%43
(0.038) (0.030)

0.681  0.607
(0.034) (0.044)

0.282 0.315
(0.040) (0.033)

0.539 0.470
(0.044) (0.048)

0.344 0.562
(0.097) (0.000)

0,088 0.114
(0.029) (0.032)

0.022
(0.049)

0.616
(0.060)

0.214
(0.039)

0.596
(0.045)

0.275
(0.036)

0.642
(0.041)

0.250
(0.040)

0.568
(0.048)

0.205
(0.049)

0.452
(0.049)

0.374
(0.084)

0.058
(0.032)

-0.124
(0.053)

0.550
(0.073)

0.040
(0.051)

0.53%6
(0.057)

0.063
(0.053)

0.553
(0.054)

0.066
(0.057)

0.489
(0.056)

0.062
(0.064)

00394
(0.052)

0.116
(0.128)

0.0%32
(0.031)
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Relative Conservatism of Bayesian Fixed Sample Size MUAS
Elz p=.01l vs. Haz p=.05

Table entries:
of the ratio RC=(nominal risk-observed risk)/nominal risk

2.2F .01

.05

2.3F .01

.05

2.4F .01

.05

2.5F .01

.05

2.6F .01

mean and standard deviation (in parentheses)

Distribution
J=100 Unimodal Uniform
Low High Low High Low High

0.435 0.311 0,163 0.18% 0.242 0.054 -0.060
(0.028) (0.036) (0.043) (0.042) (0.039) (0.046) (0.049)
0.440 0.440 0.440 0.440 0.387 0.369 0.334
(0.000) (0.000) (0.000) (0.000) (0.031) (0.035) (0.043)
0.357 0.232 0.220 0.214 0.257 0.18% 0.052
(0.011) (0.029) (0.030) (0.031) (0.027) (0.034) (0.043)
0.437 0.437 0.437 0.394 0.366 0.352 0.366
(0.000) (0.000) (0.000) (0.024) (0.0%1) (0.034) (0.031)
0.343 0.247 0.205 0.212 0.254 0.205 0,061
(0.010) (0.027) (0.032) (0.0%1) (0.026) (0.032) (0.043)
0.526 0.512 0.512 0.448 0.410 0.423 0.372
(0.000) (0.013) (0.013) (0.031) (0.038) (0.036) (0.044)
0.323 0.252 0.221 0.205 0.244 0.213 0.055
(0.008) (0.025) (0.029) (0.031) (0.026) (0.030) (0.045)
0.631 0.610 0.599 0.523 0.501 0.447 0.404
(0.000) (0.015) (0.019) (0.034) (0.037) (0.044) (0.049)
0.289 0,250 0.211 0.182 0.250 0.192 0.066
(0.000) (0.019) (0.027) (0.032) (0.019) (0.030) (0.045)
0.743 0.530 0.612 0.480 0.448 0.407 0.390
(0.012) (0.042) (0.034) (0.046) (0.049) (0.051) (0.052)
0.430 0,333 0,410 0.294 0.410 0.294 0.080
(0.019) (0.047) (0.027) (0.055) (0.027) (0.055) (0.083)
0.301 0.080 0.088 0.022 0.123 0.119 0.095
(0.041) (0.043) (0.043) (0.043) (0.043) (0.043) (0.043)
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TABLE 4.11

Relative Efficiency of Classical Sequential MUAS

Table entries: mean (AVG) and maximum (MAX) of the ratio

REB=(n*-ASN)/n*, where n* is the optimal fixed sample
size and ASN is the average =samples size, and the
proportion of truncated decisions (PTD), based on 2500
replications on the control distributions

Tegt

.18 1.2 1.8 1.4 1.8 _ 1.68

p'-OI MAX 0610 0590 . 625 -542 0495 0532

p=o 05

AVG 440 433 467 .381 355 «394
PTD .098 <157 132 .076 .114 .098

MAX .984 .985 «975 .987 .981 <979
AVG .570 .522 421 .594 .542 .500
PID .040 .070 .090 .030 .060 078
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TABLE 4.12

Relative Efficiency of Bayesian Sequential MUAS
Hl: p=.01 vs. H2= p=.05
Table entries: mean (AVG) and meximum (MAX) of the ratio
REB=(n*-ASN) /n*, where n* is the optimal fixed sample
size and ASN is the average sample size, and the
proportion of truncated decisions (PTD), based on 2500
replications on the control distributions

Teat

2.18 2,23 2.33 2,43  2.53 2,63
pSQOJ. m -232 -425 0482 . 539 -602 0676

AVG -t .300 .348 .402 .466 .618

PTD .235 127 117 .102 .084 .082

p:o 05 MAX . 989 ° 983 a 982 0 980 . 977 . 941
AVG 674 .600 .563  .510 .455 -t
PTD 041 .041 .050 .065 .084 144

*sfficiency measures omitted (see text)
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TABLE 4.13

Relative Conservatism of Classical MUAS: Degenerate Distributions
Hl: p=.0l vs. H2= p=.05
Table entries: mean and standard deviation (in parentheses)
of the ratio RC=(nominal risk-observed risk)/nominal risk
for sequential (S) and fixed sample size (F) tests

Distribution
.3 .5 .8
lest _p_ S = S r S .
1.1 .01 1.000 1.000 0.699  0.683 0.548  0.472
(0.000) 70.000) (0.122) (0.129) (0.149) (0.165)

.05 1.000 1.000 0.877 0.845 0.632 0.652
(0.000) (0.000) (0.061) (0.077) (0.105) (0.115)

1.2 .01 1.000 1.000 0.479 0.534 0.436 0.491
(0.000) (0.000) (0.149) (0.139) (0.154) (0.145)

05  0.985 1.000 0.831  0.798 0.616 0.534
(0.015) (0.000) (0.050) (0.063) (0.075) (0.095)

1.3 .01 1.000 1.000 0.483 0.585 0.612 0.526
(0.000) (0.000) (0.181) (0.156) (0.157) (0O.166)

.05 0.960 0.960 0.820 0.775 0.319 0.246
(0.020) (0.023) (0.042) (0.054) (0.077) (0.094)

1.4 .01 0.921 0.917 0.499 0.473 0.262 0.445
(0.046) (0.048) (0.113) (0.119) (0.135) (0.122)

.05 1.000 1.000 0.907 0.880 0.722 0.681
(0.000) (0.000) (0.053) (0.069) (0.092) (0.112)

1.5 .01 0.892 0.893 0.197 0.210 0.306 0.551
(0.048) (0.048) (0.127) (0.125) (0.119) (0.096)

.05 0.968 0.980 0.886 0.857 0.497 0.307
(0.023) (0.020) (0.043) (0.054) (0.088) (0.115)

1.6 .01 0.9%9 0.943 0.392 0.368 0.361  0.569
(0.043) (0.041) (0.133) (0.132) (0.136) (0.110)

.05 0.969 0.974 0.823 0.790 0.314 0.199
(0.018) (0.019) (0.042) (0.052) (0.079) (0.096)
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TABLE 4.14

Relative Conservatism of Bayesian MUAS: Degenerate Distributions
le p=.01 vs. H2: p=.05

Table entries: mean and standard deviation (in parentheses)
of the ratio RC=(nominal risk-observed risk)/nominal risk
for both sequential (S) and fixed sample size (F) tests

Distribution
.3 .5 .8

—

Test p _8S _F s E S F

2.1 .01 0.098 0.079 =0.372 =0.213 =0.220 -0.268
(0.046) (0.045) (0.056) (0.052) (0.054) (0.053)

05 0.793 0.440 0.786 0.387 0.604 0.369
(0.000) (0.000) (0.034) (0.0%1) (0.070) (0.035)

2,2 .01 0.383 0.326 0.072 0.083 _0.070 0.183
(0.019) (0.018) (0.047) (0.041) (0.050) (0.034)

05  0.742  0.437 0.683 0.394 0.447 0.239
(0.000) (0.000) (0.037) (0.024) (0.074) (0.052)

2,3 .01 0.380 0.323 0.092 0.095 0.157 0.205
(0.018) (0.015) (0.049) (0.041) (0.047) (0.032)

.05 0.767 0.525 0.737 0.474 0.397 0.206
(0.015) (0.000) (0.031) (0.025) (0.073) (0.062)

2,4 .01 0.365 0.307 0.072 0.079 0.145 0.181
(0.018) (0.014) (0.053) (0.043) (0.052) (0.034)

.05 0.788 0.621 0.730 0.523 0.267 0,122
(0.014) (0.011) (0.033) (0.034) (0.071) (0.071)

2,5 .01 0.31 0.289 0.112 0.114 0.187 0,163
(0.000) (0.000) (0.053) (0.040) (0.051) (0.035)

.05 0.784 0.694 0.682 0.587 0.157 0.062
(0.022) (0.023) (0.035) (0.037) (0.060) (0.069)

2.6 .01 0.562  0.449 0.131 0.158 =~0.332 =0.173
(0.000) (0.000) (0.111) (0.074) (0.183) (0.106)

.05 0.297 0.456 0.352 0.406 0.169 0.266
(0.032) (0.038) (0.032) (0.039) (0.032) (0.042)
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TABLE 4.15
Empirical and Theoretical Power Functions of Test 1.1

A(p) ASN__
Test (1) (@ (3 (1) (3 (3)
1.1F .005 0.000 0.000 0.002 182 182 182
.01  0.000 0.016 0.037 182 182 182
.02 0.116 0.274 0.301 182 182 182
.025 0.534 0.478 0.479 182 182 182
.03 0.794 0.700 0.640 182 182 182
.04 1,000 0.926 0.856 182 182 182
.05 1.000 0.986 0.952 182 ig82 182
.06 1,000 0.998 0.986 182 182 182
.07 —-  0.998 0.996 --- 182 182

1.18 .005 0.000 0.000 0.003 82 g8 88
.01 0.000 0.02¢ 0.039 102 113 105
.02 0.118 0.276 0.287 166 137 124
025 0.932 0.462 0.454 173 134 123
.03 0.794 0.692 0.607 159 131 117
.04 1.000 0.914 0.824 113 99 100
.05 1.000 0.980 0.930 72 75 82
.06 1.000 0.998 0.973 53 61 67
.07 -— 0.998 0.990 - 49 55

Legend: (1) low J relative error distribution
2) uniform relative error distribution
3) theoretical results, i.e. assuming a binomial
error distribution; for ASN, the bound given
by (33) in section 3.2 is used

Note: empirical results are based on 500 replications; stan-
dard deviations do not exceed .0225 and are quite low
in the tails; results for the low J distribution for
p=,07 were not obtained
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PIGURE 4.1A
Low Variance J Distribution
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PIGURB 4.1B
Low Variance J Distribution
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Summary statistics:

Frequency mean  =0.099
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PIGURE 4.24
High Variance J Distribution
p=.01
Relative Summary statistics:
Frequency mean  =0,101
variance=0.029
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PIGURB 4.2B
High Variance J Distribution
p=.05
Relative Summary statisticas:
Prequency mean =0.102
variance=0.029
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PIGURE 4.3A
Low Variance J-100 Distribution
p=.01
Relative Summary statistics:
Frequency mean =0.119
variance=0.027
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PIGURE 4.3B
Lov Variance J=-100 Distribution
p-.°5
Relative Sunmary statistics:
Frequency mean =0.131
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PIGURR 4.4A
High Variancs J-100 Distribution
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PFrequency mean =0,132
variance=0.049

.50 4

+50 -

40 -

.30 4

20 1

clo 1
e =]

.20 .40 .60 .80 1.0
Relative Srror



138

PIGURB 4.43
Bigh Variance J-100 Distribution
p=.05
Relative Summary statistics:
Prequency mean =0.130
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PIGURE 4.5A
Low Yariance Unimodal Diatribution
p-o°1
Relative Summary statistics:
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PIGURE 4.5B
Low Variance Unimodal Distribution
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PIGURB 4.6A
High Variance Unimodal Distribution
p=.01
Relative Sumpary statistics:
Frequency mean =0.489
variance=0,03%1
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PIGURE 4.6B
High Variance Unimodal Distribution
p=.05
Relative Summary statistics:
Prequency mean =0,.515
variance=0.028
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PIGURE 4.7TA
Uniform Distribution
p-o°l
Relative Summary statistics:
Frequency mean =0,502
variance=0.084
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PIGURE 4.7B
Uniform Distribution
p-oos
Relative Summary statistics:
Prequency mean =0,504
variance=0,077
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FIGURE 4.84

Relative Conservatism of Classical MUAS: Test 1.1S
*x=.040/3 =.065

Graph: mean (AVG) and 95% confidence limits (UCL,LCL) for
the ratio RC={nominal risk-observed risk)/mominal risk

pl-°1

1.0 Sl Lt Tk

0.5

0.0 1T 1B 2T o8 3T 3H 2
Diastribution*

1.0

0.5

0.0 1T 18 39 30 3T 38 2

Distribution*

*legend: l=J, 2aJ-100, 3=unimodal, 4=uniform
L=low variance, H=high variance
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FIGURE 4.8B

Relative Conservatism of Classical MUAS: Test 1.1lF
M=.038/ /3 =.052

Graph: mean (AVG) and 95% confidence limits (UCL,LCL) for
the ratio RCs(nominal risk-observed risk)/nominal risk

p-o 01
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0.0 T 18 3T 7 3T 36 7
Distribution*

*legend: 1lsJ, 2=J-100, 3=unimodal, 4=uniform
Lslow variance, Hshigh variance
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FIGURE 4.94

Relative Conservatism of Classical MUAS: Test 1.28

A=.046//3=,130

Graph: mean (AVG) and 95% confidence limits (UCL,LCL) for
the ratio RC=(nominal risk-observed risk)/rominal risk

, p=.01
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*legend: 1l=J, 2=J-100, 3=unimodal, 4=uniform

L=low variance, H=high variance
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FIGURE 4.9B

Relative Conservatism of Clasgssical MUAS: Test 1l.2F

=.047/3 =.099

Graph: mean (AVG) and 95% confidence limits (UCL,LCL) for

l.o

0.9

o.o

1.0

0.5

0.0

the ratio RC=(nominal risk-observed risk)/mominal risk
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*legend: 1laJ, 2=J-100, 3=unimodal, 4=uniform

Lealow variance, H=high variance
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FIGURE 4.10A

Relative Conservatism of Classical MUAS: Test 1.3S

&=.031/ 3=.200

Graph: mean (AVG) and 95% confidence limits (UCL,LCL) for

l.o

0.5

0.0

l.o
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the ratio RC=(nominal risk-observed risk)/mominal risk
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*legend: 1l=J, 2=J-100, 3=unimodal, 4=uniform

Lxlow variance, Hshigh variance
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FIGURE 4.10B

Relative Conservatism of Classical MUAS: Test 1.3F
=.034/ R=.151

Graph: mean (AVG) and 95% confidence limits (UCL,LCL) for
the ratio RC=(nominal risk-observed risk)/nominal risk
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*legend: 1l=J, 2=J=-100, J=aunimodal, 4=uniform
L=low variance, Hzhigh variance
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FIGURE 4.114

Relative Conservatism of Clasgsical MUAS: Test 1.4S
R=.076/3=.065

Graph: mean (AVG) and 95% confidence limits (UCL,LCL) for
the ratio RC=(nominal risk-observed risk)/nominal risk
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*legend: 1l=J, 2=J-100, J=unimodal, 4=uniform
Lalow wvariance, H=high variance
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FIGURE 4.11B

Relative Conservatism of Classical MUAS: Test 1l.4F

K=,072//3=.050

Graph: mean (AVG) and 95% confidence limits (UCL,LCL) for
the ratio RC=(nominal riske-observed risk)/nominal risk
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FIGURE 4.12A

Relative Conservatism of Classical MUAS: Test 1.583
*=.092//R3=.127

Graph: mean (AVG) and 95% confidence limits (UCL,LCL) for
the ratio RCm(nominal risk-observed risk)/nominal risk
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*legend: 1=J, 2=J-100, 3sunimodal, 4auniform
L=low variance, Hzhigh variance
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FIGURE 4.12B

Relative Conservatism of Classical MUAS: Test 1.S5F

*=.094/(3 =.098

Graph: mean (AVG) and 95% confidence limits (UCL,LCL) for
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*legend: 1l=J, 2=J=100, 3=unimodal, 4=uniform

L=low variance, Hahigh variance
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FIGURE 4.13A

Relative Conservatism of Classical MUAS: Test 1.68
=0066/B=n192

Graph: mean (AVG) and 95% confidenmce limits (UGCL,LCL) for
the ratio RC=(nominal risk-observed risk)/nominal risk
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*legend: 1l1l=J, 2=J-100, 3=aunimodal, 4=uniform
Lalow variance, Hahigh variance
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FIGURE 4.13B

Relative Conservatism of Classical MUAS: Test 1.6F
®=.070/3=.152

Graph: mean (AVG) and 95% confidence limits (UCL,LCL) for
the ratio RC=(nominal risk-observed risk)/nominal risk
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*legend: 1l=J, 2=J-100, 3=unimodal, 4=uniform
L=low variance, H=high variance
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FIGURE 4.14A

Relative Conservatism of Bayesian MUAS: Teast 2.18

g(.01)=.4/g(.05)=.6

Graph: mean (AVG) and 95% confidence limita (UCL,LCL) for
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l=J, 2=J=100, 3=unimodal, 4=uniform
L=low variance, H=high variance
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FIGURE 4.14B

Relative Conservatism of Bayesian MUAS: Test 2.1F

g(.01)=.4/g(.05)=.6

Graph: mean (AVG) and 95% confidence limits (UCL,LCL) for
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*legend: l=J, 2:J=100, 3=aunimodal, 4=uniform

L=low variance, H=high variance
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'FIGURE 4.15A

Relative Conservatism of Bayesian MUAS: Test 2.2S

g(.01)=.5/g(.05)=.5

Graph: mean (AVG) and 95% confidence limits (UCL,LCL) for
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*legend: 1l=J, 2=J-100, J=unimodal, 4=uniform

L=low variance, H=high variance
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FIGURE 4.153

Relative Conservatism of Bayesian MUAS: Test 2.2F

g(.01)=.5/g(.05)=.5

Graph: mean (AVG) and 95% confidence limits (UCL,LCL) for
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*legend: l=J, 23J=100, 3=unimodal, 4=uniform

L=low variance, H=high variance
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FIGURE 4.164

Relative Conservatism of Bayesian MUAS: Test 2.38
6(001)306/8(005)=04

Graph: mean (AVG) and 95% confidence limits (UCL,LCL) for
the ratio RC=(nominal risk-observed risk)/nominal risk
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*legend: =J, 2=J-=-100, FI=munimodal, 4=uniform
L=low variance, Hahigh variance
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FIGURE 4.16B

Relative Conservatism of Bayesian MUAS: Test 2.3F

g(.01)=.6/g(.05)=.4

Graph: mean (AVG) and 95% confidence limits (UCL,ILCL) for
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*legend: 1l=J, 2=J-100, J=aunimodal, 4=uniform

L=low variance, H=high variance
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FIGURE 4,174

Relative Conservatism of Bayesian MUAS: Test 2.4S
g(.01)=.7/g(.05)=.3

Graph: mean (AVG) and 95% confidence limits (UCL,LCL) for
the ratio RC=(nominal risk-observed risk)/nominal risk
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*legend: 1=d, 22J-100, J=unimodal, 4=uniform
L=low variance, H=high variance
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FIGURE 4.17B

Relative Conservatism of Bayesian ifUAS: Test 2.4F
g( .01)=.7/5(-°5)=-3

Graph: mean (AVG) and 95% confidence limits (UCL,LCL) .for
the ratio RC=(nominal risk-observed risk)/nominal risk
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*legend: 1l=J, 2=J=100, J=unimodal, 4=uniform
l=low variance, H=high variance
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FIGURE 4.18A

Relative Conservatism of Bayesian MUAS: Test 2.5S

g(.01)=.8/g(.05)=.2

Graph: mean (AVG) and 95% confidence limits (UCL,LCL) for
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#*legend:

the ratio RC=(nominal risk-observed risk)/nominal risk
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FIGURE 4.18B

Relative Conservatism of Bayesian MUAS: Test 2.5F

g(.01)=.8/g(.05)=.2

Graph: mean (AVG) and 95% confidence limits (UCL,LCL) for
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*legend:

the ratio RC=(nominal risk-observed risk)/nominal risk
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FIGURE 4.19A

Relative Conservatism of Bayesian MUAS: Test 2.68
g(.01)=.9/g(.05)=.1

Graph: mean (AVG) and 95% confidence limits (UCL,LCL) for
the ratio RCa{nominal risk-observed risk)/nominal risk
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*legend: 1l1l=J, 2=J=100, 3=unimodal, 4=uniform
L=low variance, Hahigh variance
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FIGURE 4.19B

Relative Conservatism- of Bayesian MUAS: Test 2.6F

g(.01)=.,9/g(.05)=.1

Graph: mean (AVG) and 95% confidence limits (UCL,LCL) for
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L=low variance, H=high variance
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Empirical Versus Theoretical Power Functions for Test 1l.1F
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APPENDIX A
STATISTICAL FREQUENCY AND DENSITY FUNCTIONS

1. Binomial Diatribution. The binomial(n,p) frequency
function is given by

£2(x;0)=(3 )" (1-0)"*  x0,1,...,n
vhere O{p<£1l and n is a positive integer. If xi (i=l,.4.o1)
are independent, identically distributed binomial(l,p) random
variables (more commonly called Bernoulli random variables),
then S= 2§=l X; ~sbinomial(n,p) with B(S)=np and Var(S)=np(1-p).

2. Poisson Distribution. The Poisson(q) frequency func-
tion is given by

£(x;q)=e"3g%/x1 x=0,1,2,...
where q 0. E(X)=Var(X)=q.' For p small and np moderate,
the binomial(n,p) may be approximated by the Poisson(np).

3. Normal Distribution. The normal(a,bz) density func-
tion is given by

£(x3a,0%)=(/2% b)'lexp{-(x-a)z/.?bz}
where b20. E(X)=a and Var(X)=b2. The normal(0,1) distri-
bution is called the standard normal distribution. Its
(cumulative) distribution function is denoted by D (*).

4. Gamma Distribution. The gamms(r,s) density function
is given by

£(x;r,8)=sTx""1e 8%/ (r) x>0
vwhere r,s>0 and [V(*) is the Euler gamma function. E(X)=r/s
and Var(x)=r/sa. The gamma(l,s) is called the exponential(s)
distribution, with density given by

£(x;8)=3¢"%* x>0
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APPENDIX B
TABLES OF THE CUMULATIVE POISSON DISTRIBUTION
PAX2xY = Flxia) = Tf o™ % /!
q=0.1(0.1)20.0
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APPENDIX C

ALGORITHMS TO COMPUTE THE ACCEPTANCE/REJECTION REGIONS,
POWER, AND ASN OF SEQUENTIAL MUAS

(Note: The following algorithms are written in Pascal, and,
except for the nonstandard file "input/" and its operator
"readln", syntax and usage comply with the Jensen-Wirth
standard.)

rogram accrej(input/,output,tree,param,arfile);
%*compuxes the acceptance/rejection regions for sequential MUAS
output to file "tree"; similar information, formatted for
use in the program "direct", is output to the file "arfile".
gnput file "param" must contain parameters in the following
ormat:
low error rate high error rate
log bound for acceptance log bound for rejection
fixed sample size eritical value
(other bounds/sample sizes for the same error
rates may follow *
const
maxlevel=50;
maxbranch=100;
var
h,i,j,k, m,n, cv,levela,levelr,levels:integer;
loga,logb,pl,p2,denom,num,fact2,factla,factlbsreal;
a,r:arrayll. . .maxlevel,l..2] of integer;
ar:arraylO..maxlevel,l..3] of integer;
tree,param,arfile:toxt;
flag ‘sboolean;
begin
rewrite(tree);
rewrite(arfile);
reset(param) ;
readln(param,pl,p2);
while not eof(param) do
begin
readlnéparam,loga logb);
readln(param,n,cv);
denom:=ln(p2/pl)-ln((l.O-gZ)/(l.O—pl));
num:=1n((1.0-pl)/(1.0-p2));
fact2:=num/denom;
factla:=loga/denom;
factlb:=logb/denom;
1:=0;
J3=0;
m:=0;
while m4n do
begin *
Je=j+ls;
s=trunc((i-factla)/fact2)+1l;
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levelat=j;
allevela,l):=n;
if levelay l
then aflevela,2l:=allevela-1l,2]+1
else allevela,21:=0;
i:=1;
J3=0;
m:=0;
while (m¢n) and (i< =cv) do
begin
me¢=trunc( (i-factldb)/fact2);
if my =i
then
begin
Js=J+l;
rli,1]:=m;
rlj,21:=1;
end;
i:misl:
end;
if j>=l
then levelr:=j
else levelr:=l;
r{levelr,l]l:=n;
rilevelr,21:=cv;
writeln(tree);
writeln(tree, 'acceptance numbers:');
writeln(tree,’ m = a(m)');
for i:=1l to levela-l do
writeln(tree,ali,11:5,' ',al1,21:5);
write(tree,allevela,l}:5,' ',allevela,2):5);
for i:=allevela,2]+l to cv=1 do
write(tree,',',1i:1);
writeln(tree);
writeln(tree);
writeln(tree, 'rejection numbers:');
writeln(tree,' m = =r(m)');
for i:=1 to levelr do
writeln(tree,rli,21:5,' ',rli,2]:5);
writeln(tree);
writeln(tree, 'input data:');
writeln(tree, 'pl=',pl:8:6,' p2=',p2:
writeln(tree,'log a="',l0ga:8:6,' log b
writeln trees'nz',nzs,' ev=",cv:8);

8:6);
=',logb:8:6) ;

writeln(tree);
=13
ki=l;
ar 0,1 :=0;
ar 0,2 :=0;
ar 0,3 :=0;
?

flag:=true
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for j:=1 to levela do
begin
while r(1,1]1 ¢alj,1] do
begin
arfk,1] :=rli,1];
if flag=false
then ar{k,2):=ar[k-1,21+1
else ar[k,2l:sarlk-1,21;
arlk,3]l:=rli,21-1;
if arlk,l}=ar{k-1,11)
then
begin
ar{k-1,31:=ar(k,3];
k:=ak-l;
end;
11=i+l;
ki=k+l:
flag:strue;
end;
arlk,1]1:=al3,1];
if flag=true
then ar(k,3):=arlk-1,31+1
else arlk,3):=ar{k-1,31;
if i=l
then ar[k,3]:=r[i,2]-1;
ki=k+l: :
flag:=falsge;
end; (*j*)
levels:zk-1l;
for i:=1 to levels do
if ar{i,3]y =cv=1
then ar(i,3 lsacv-1;
writelng arfile);
writeln(arfile,levels:2);
for i:=1 to levels do
writeln(arfile,arfi,11:3,' ',arl1,21:3,' ',ar(i,31:3);
end; (*while*)
end. (*accrsj*)

rogram direct(input/,output,pover,arfile);

E*computes power and asn for sequential muas given one or
more acceptance/rejection regions in "arfile" as generated
by the program "accrej'--warning: these regions are not
ordinary regions and only output from "accrej" should be
used. output is to the file "power". *)

const
maxlevel=50;
maxbranch=100;

var
i,i,k,m,n,cv,levels:integer;
index:arraylO..maxbranch] of integer;
br,s:arrayl0..maxbranch] of real;
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ar:arrayl0..maxlevel,l..3] of integer;
elpha,beta,en,es,x,p:real;
pover,arfile:text;

flag,conti:booleans

ch:char;

function comb(n,k:integer):real;

(*computes combinations of n things taken k at a time;
returns real value to avoid integer overflow problems*)
var

i,j:integer;
tot:real;

begin
it (x<0) or (n<0)
then comb:=0.0
else if k=0
then comb:=1.0
else
begin
tot :’loo;
t=n-k+l;
Js=l;
vhile (i <4=n) and (j <=k) do
begin
tot satot*(1/3);
ie=4+1;
Je=J+l;
end;
combi:=tot;
end; (*else*)
end; (*comb*)
function biprob(n,ksinteger;psreal):real;
(#*computes binomial probability of k occurrences with
parameters n and p*)
begin
i (p<=0.0) or (p>=1.0)
then biprob:=0.0
else biprobi=comb(n,k)*exp(k*ln(p))*exp((n-k)*1n(1.0-p));
end; (*biprob*)
begin
rewrite(povwer);
reset(arfile);
while not eof{arfile) do
begin
readln({arfile,levels);
for i:=1 to levels do
readln(arfile,arli,1l,ar[i,23,ar(1,31);
arlL0,1]:=0;
arf0,21:=0;
ar{0,31:=0;
arllevels+l,l1:=
arflevels+l,21:=
arllevels+l,31:=
n:=ar[levels,l l;
cve=arllevels,3]+1;

ar(levels,l]l+l;
arflevels, 3d+1;
ar({levels,3);
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cont:=true;
while cont=true do
begin
for 1i:=0 to maxbranch do
8li) :=0.0;
alpha:=0.0;
index[Q):=0;
index[1):=ar 1,2 ;
brl0l:=1.0;
writeln('enter p, e.g. 0.05');
readln;
read(p);
i:=1;
repeat
i=ar{i,l] -ar{i-1,11;
k:=index[il-index{1i-11;
brfid:=biprob(m,k,p)*brfi-11;
=i+l
indexli) :=index[i-11;
if index[1] ¢ arli,2?
then
begin
is=i-l;
alpha:=alpha+br[il;
s[index[il] :=slindex[1]] +br{i] ;
index[i] :=index[il +1;
vhile (index[i]» arfi,3]) and (170) do
begin
1t=i=1;
indexCil:=indexCi]+1;
end;
end; (*then*)
until 1=0;
beta:=1l.0-alpha;
e8:=0.0;
for i:=1 to cv=1l do
es:=es+(i*s(11);
x:=20.03
if (arf1,33<cv=1) and (ar{1,2)=0)
then
begin
for 1:=0 to ar[l,3] do
x:=x+biprob(ar{l,13,1,p);
Xx:=l.0=x}
end ;
es:zes+((arfl,33+1)*x)+(cv*(beta=x));
en:=es/p;
writeln?power) ;
writeln(power,'expected sample size and power:');
writeln(power,' p=',p:8:6,' E(N)=',en:5:2,
'beta p)=',beta=8=6§;
writeln(power);
writelr'ag 'continue on this test for another p? y=yes,
n=no');
readln;
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read(ch);
if ch="y'
then cont:=true
else cont:=false;
end; (*while*)
writeln(power, 'input data:');
writeln(power,' m a(m)* xr(m)-1');
for i:=l to levels do
writeln(power,arfi,11:4,' ',ar[i,21:4,' ',arli,31:4);
vriteln(power);
writeln(power,'* x is acceptance number only for the
higheat m such that x=a(m)');
end; (*eof*)
end. (*dirasct®)
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APPENDIX D
ALGORITHM TO FIND MUAS BAYES RULE

(Note: The following algorithm is written in Pascal, and,
except for the nonstandard file "input/" and its operator
"readln", usage conforms with the Jensen-Wirth astandard.
A graph of expected louss versus sample size for n*-50 %o
n*+50 is produced if desired.)

program baysamp(input/,output,loss);
(*finds optimal fixed sample size for Bayesian MUAS and
the corresponding sequential bounds*)
const
min=20;
=50°;
width=50;
scale=5.0;
var
i,j,k,m,n,q,kstar,nstar,start,stop:integer;
a,b,pl,p2,alpha,heta,lambl,lamb2,c,ql,q2,lstar,x,y,Llo,
hisreal;
L:array[min..max] of real;
loas:test;
ch:char;
continuesboolean;
function prob(qsinteger;rireal)real;
(*computes Poisson probability of X» =q, where q¢ =300
and the Poisson parameter is r*)
var
i:integer;
pireal;
g:tarrayl0..300] of real;

8L0]:=exp(-r);
p:=8[0];
for i:=1l to q-1 do
begin
8fil:=s(i-1]*r/1i;
pi=p+slil;
end;
prob:=1.0=-p;
end; (*prob*
procedure header;
var
i,jsinteger;
begin
write(loas,' L:');
for i:=1 to 10 do
begin

j:=round(10*i*scale);
write(loss," ',3:4);
end;

end; (*header+*)
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begin (*baysamp*)
rewrite(loss);
continuei=true;
while continue=true do

begin
writeln( 'enter Lo and hi error rates, e.g. 0.01 0.05');
readln.
read(pl p2);
writeln{ enter type I and II losses, e.g. 1000 2000');
readln;

read(alpha,beta);
writeln( 'enter prior for Lo error rate, e.g. 0.75');
readln;
read(ql);
q2:=1.0=ql;
Letar:=(ql*alpha)+(q2*beta);
c:=(ql*alpha)/(q2%*beta);
for n:=min to max do
begin
lambl:=n*pl;
lamb2:=n*p2;
xi=lambl-lamb2;
y.=lamb2/lambl
k:atrunc((1la(ec)-x)/1n(y) )+1;
L[n7:=(ql*prob(k, 1ambl¥*alpha)+(q2*(l.0-prob(k,lambz))
*beta)+n:
if Lin} < =Lstar
then
begin
Latar:=Linl;
natar:=n;
kstar:=k;
end;
end; (*for*)
=1n((ql/qz)*(Lstar-nstar)/(beta—Lstar+nstar)),
.=ln ?l/qz)* alpha-Lstar+nstar)/(Lstar-nstar)).
1 0-§2)/(1 .0-pl)); )

2/pl

writeln?loes),
writelnéloss,'test of ',pl:5:3,' vs ',p2:5:3,':');
writeln(loss,' prior for low rate=',ql:5:3);
writeln(loss,' losses: Kl2=',alpha:10:1,' K21=',

beta:10:1);
writeln(loss, L=',Latar:6:1);
writeln(loss, =',nstar:6);
writeln(loss C=',katar:6);
writeln(losss
writeln(loss,’ sequential test:');
writeln(loss, ' bounda: ',a:6:3,' ',b:6:3);
writeln(loss. incrmn: Lo 6:3,' ',hi:6:3);
writeln( 'graph of losses? y=yes, n=no');
readln;

read(ch);
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if ch="y'
then
begin
writeln(loss);
header;
writelnélose) ;
writeln(loss, 'n:');
start:=natar-width;
if start< min
then start:=min;
stop:=nstar+width;
if stop ) max
then stopi:=max;
for i:=start to stop do
begin
write(losa,i:4);
qe=round(L[i]/scale);
if ¢< 100
then
begin
for j:=1 to q do
write(loss,"' '
writeln(loss, '*'
end
else
begin
for j:=1 to 99 do
write(loss,' ');
writeln(loss, 'x');
end;
end; (*i*s
header;
end: (*then*)
writeln(loss);
writeln('continue? y=yes, n=no');
readln;
read(ch);
if ch="'y'
then continue:=true
else continues:=false;
end; (*while*)
end. (*baysamp*)

)3
)s
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APPENDIX E
TEST POPULATION GENERATOR

(Note: The following algorithm is written in Pascal, and,
except for the nonstandard file "input/" and its operator
"readln", usage conforms with the Jensen-Wirth standard.)

program population(input/,output,dist,errpop);
(*to generate an error population with a given random
error pattern; output is written to the file "exrrpop";
the cumulative distribution function of the desired
relative error pattern must be input on a file called
"dist" with the following format:
n
x1 Féxl)
x2 F(x2)
m F(xn)

where xi<¢=1.0 for all i, F(x1)=0.0, and F(xn)=1.0,

and n< =100%)

const
emax=2000;
fmax=21;
cemax=100;

var
h,i,j,k,L,over,bover,cover,under,bunder,cunm,run, test,

cellcount:integer;
a,b,¢,d,u,w,2,10,hi,xbar,sampvar,wtvar,taint,pl, p2,
seed ,mean,variance:real;
pop:arrayl0..9,1..2] of integer:;
ep:arrayll..emax,l..3] of real;
cell:arrayll. .fmax] of real;
jdist:arrayfl..cmax,l..2] of real;
freq:arrayll. .fmaxl of integer;
errpop,digst:text;
function random(x:real):real;
(#for O < =x < =1 returns pseudorandom uniform(0,l) variable
using D. Malm's generator--HP-67 Users' Library*)
var
yereal;
begin
y:=(9821%x)+0.211327;
z:=y=-trunc(y);
random:=2z;
end; (*random*)
function uniform(a,b:real)sreal;

( *returns pseuwdorandom uniform(a,b) variable*)

begin
uniform:=((b-a)*random(z))+a;

end; (*uniform*)
begin (*population*)
popl0,17:=0;
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popl0,21 :=0;
popll,1]:=1050;
por[2,1]1:=1750;
popl[3%,1]:=2200;
pop[4,11:=2550;
pop([5,11:=3000;
popl6,11:=3400;
popl7,11:=3550;
pop[8,11:=3800;
popi9,11:=4000;
popll,21:=75;
for i:=2 to 9 do
popli,2):=popli-1l,27*2;
cellll] :=0.0;
for i:=2 to fmax-l do
celll11:20.05%(i-1);

celllfmaxl:=1.001;
for i:=l to fmax do
freqlil:=0;
writeln ('enter run number, e.g. 1');
readln;
read(run);
reset(dist);
readln(dist,cellcount);

for i:=1 to cellcount do
readln(dist, jaistLi,13, jdist[1,23);
writeln( 'enter proportion of items in error pl');
writeln(' and proportion of 100% errors p2, p2 =pl');
writeln(' e.g. 0.05 0.01');
readln;
read(pl,p2);
writeln( 'enter seed, 0< seed<l, e.g. 0.4433');
readln;
read(seed);
s=geed;
k:=0;
h:=0;
cum:=0;
cover:=0;
xbar:=0.0;
sampvar:=0.0;
wtvar:=0.0;
for j:=1 to 9 do
begin
for i:=popLj-1,11+1 to poplj,1l] do
begin
wiz=random(z) ;
if w¢=pl
then
begin
k:=k+l:
eplk,2:=((i-poplj-1,11) *poplj,21)+cum;
gptl;,l‘]:=ep£k,2]-pop[3.2]+l.0;
=2
us=random(z) ;
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while u 9 jdistlL,2] do
Li=L+1;
eplk,31:=uniform( jdist{ L-1,11, jdist(L,11);
if w{ =p2
then
begin
eplk,31:=1.00;
cover:=cover+round(eplk,2l-enlk,11+1.0);
h:i:ah+l;
freqlfmaxl:=freq[fmax]+1;
end
else
begin
xbar:=xbar+epik,31;
sampvar:=sampvar+sqr{eplk,31);
t=l;
while eplk,315 celllL] do
Li=l+l;
freq[Ll:=freqlLl+1;
end;
:tvar::wtvar+(sqr( eplk,31)*(eplk,2] -eplk,11+1.0));
end;
end; (*1*5
cuns=cum+( (popLj,1l-poplj-1,1])*poplj,21);
end; (%*3*)
if h<k
then
begin
xbar:=xbar/(k-h);
sampvar:=(sampvar/(k-h))-sqr(xbar);
end;
over:=0;
bover:=0;
under:=0;
bunder:=0;
rewrite(errpop);
writelnzerrpcp ‘run no. ',run:3);
writeln(errpop);
for i:=1 to k do
begin
writeln(errpon,iz4,' ',epli,11:12:2,' ',ep[i,2]:12:2,
! ',ep[i,31=12=45;
taint:=ep(i,2]l-epli,1]1+1.0;
we=taint*ep[i,37;
if w>0.0
then
begin
over:=over+rouni(w);
bover:=bhover+round(taint);
end
else
begin
under:=under+round(w) ;
bund er :zbunder+round(taint);
end;
end; (*i*)
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bover:=bover-cover;

wtvar:=(wtvar/cum)~-aqr((over+under)/cum);

writeln errpops'summary of errop pop ',run:?);
’

writeln(errpop
writeln( errpop,' parent pop: items ',pop 9,1 :10);
writeln( errpop,’ dollars ',cum:10);
writeln( errpop);
writeln( errpop,' error distribution:');
writeln(errpop,' x =',ceil[1ll:4:2,' ',freqlll:4);
for i:=2 to fmax do
writeln(errpop,' ',cellli-1]:4:2,' x ="',celllil:4:2,
' ', freqCil:d);
Le=Q;
for 1:=2 to fmax do
L:=L+freqlil;
writeln( errpop);
writeln(errpop,' error mean (excl 100% over)=',xbar:8:6);
wri‘celn§ errpop,' error var {excl 100% over) =',sampvar:8:6);
writeln( errpop,' population var/n (eq. 92) =',wtvar:8:6);
writeln(errpop);
as=l/popl9,11;
z=aover/cum;
es=cover/cum;
d z=bover/cum;
writeln( errpop,' overstatement:');
wr:}??ln( ergp?gz; number of items(% of total) ',L:10,
,a238:6, '
writeln(errpop,’ book value of items overstated:');
writeln(errpop,' gartially overstated (% of total) ',
bover:10,'(*,d:8:6,')');
writeln(errpop,’ 100% overstated(% of total) ',
cover:10,'(*,c:8:6,')');
writeln(errpop,' overstatement(% of total) ',
over:lol,'!'?’ ,b28:6,'));

s=freql11/popl9,11;

s=under/cum;
c¢s=bunder/cum;
writeln(errpop);
writeln( errpop,'
writeln(errpop,'

understatement:');
aunber of items(%® of total) 'y

freq 1 :10,'(',a:8:6,')"');

writeln(errpop,"’
bunder:10,'(’,
writeln( errpop,'

book value of items(% of total) ',

c:8:6,')"');

understatement(% of total) '

under:10, ' ( 'Sb:8=6,')'):

writeln(errpop);
vriteln( errpopo,’
writeln(errpop,’
writeln(errpop,’
writeln( errpop,'
writeln(errpop);
writeln(errpop,'
writelné errpop);
writeln( errpop,'

input data:');
geed="',seed :10:8) ;
pl =',pl=5=4),
p2 =',p2:5:4);

relative error cum dist (from file "dist"):');

x F(x)');
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for i:=1 to cellcount do
writeln(errpop, ' *,ja1st14,10:7:5,' ', jdist[i,21:7:5);
end. (*population*)



Tegt Ponulation*

1L/.01
1H/.01
2L/.01
2H/.01
3L/.01
3H/.01
4 /.01

1L/.05
1H/.05
2L/.05
2H/.0%
3L/.05
3H/.05
4 /.05

APPENDIX F
INPUT DATA FOR TEST POPULATIONS

Proportion of Items in Error

1L, =x: .025
. 22

1H =x: .025
F_: .43

IL x: .30
F.: .02

3H x: .10
F_: .01

4 x: .10
Fx: .10

.05
«39

.05
.61

35
.07

.20
.04

.20
.20

.10
.63

.lo
.74

.40
.16

<30
.12

.30
«30

pl(total) p2(100%)
.0850 .0000
1100 .0000
.0800 0020
.0900 .0012
.0190 0000
.0250 .0000
0132 .0000
. 5000 . 0000
.4950 0000
.4000 .0120
4300 .Q120
«1130 0000
0950 0000
1050 0000
Cumulative Distribution Functiog*
.19 .20 .30 .40 .50 .60
.78 .86 .95 .98 .99 1.0
15 .20 .30 .40 .60 .80
.80 .85 .90 .93 .96 .98
.45 ,50 .55 .60 .65 .70
.31 .50 .69 .84 .93 .98
035 040 -45 .50 -55 o60
.19 .28 .39 .50 .61 .72
40 .50 .60 .70 .80 .90
.40 .50 .60 .70 .80 .90

*legend: 1=J, 2=J-100, 3=unimodal, 4=uniform
I=1low variance, H=high variance
.01 and .05 refer to the target error rates

195

Seed

.3584
.6523
.0620
1736
.6801
.8614
.7403

.5472
.7220
6247
.8482
.0864
<1397
4593

.70 .80 .90
.88 .96 .99

1.0
1.0

*the c.d.f.s for populations 1 and 2 are the same; all c.d.f.s
begin at x=.00 sz.OO except 3L which is x=.20 Fx=.00
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