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CHAPTER 1 

INTRODUCTION 

Independent auditors are charged with the respons ibi l i ty 

of deciding; on the fairness of the financial statements of 

their c l i e n t s . This dec i s ion process i s admittedly complex. 

Within th i s process, however, there are many re la t ive ly rou­

t ine decision problems. These routine problems are often 

amenable to s ta t i s t i ca l modeling. Conceptually, auditors 

perform two types of testing—compliance and substantive. 

Compliance t e s t s are designed to provide evidence with regard 

t o the functioning of c er ta in control features of the system 

that generates the transactions and balances which ultimately 

appear on the financial statements. While compliance t e s t s 

provide indirect evidence as to the fairness of these trans­

actions and balances, auditors also perform substantive t e s t s 

designed to provide direct evidence as to their fa irness . 

In many of these testing s i tuat ions , the auditor i s confronted 

with a large group of reasonably homogeneous items that are 

susceptible of definition as a population. An audit t e s t 
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may then be realized as the examination of a sample from a 

given population. Typically, the auditor examines this sample 

with the aim of deciding whether or not the population as a 

whole is acceptable. 

In compliance testing, the criterion of acceptability 

can, in some situations, be appropriately defined as the pro­

portion of erroneous items in the population (i.e. the popu­

lation error rate). In such cases, auditors have had avail­

able a powerful statistical model known as acceptance sampling. 

Both fixed sample size and sequential acceptance sampling 

plans have been proposed for audit use. Sequential plans 

have the advantage of lower sampling cost, on average, than 

fixed sample size plans with comparable decision risks. 

In substantive testing, the criterion of acceptability 

is the fairness of the recorded monetary value (i.e. book 

value). While auditors have had available a large number of 

statistical procedures for substantive testing, most of these 

procedures are inferior to acceptance sampling in the sense 

that decision risks cannot be reliably controlled. To the 

extent that these procedures are derived from survey sampling 

methodology, they depend on the large-sample behavior of the 

estimators used rather than the validity of distributional 

assumptions incorporated in a model of the problem. Such 

procedures are distribution-free (or nonparametric) since 

they are designed without regard for the distribution of vari­

ables in the population. But the performance of these proce­

dures has been shown (both in the audit literature and in 
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research on f in i t e population sampling theory) to be population-

dependent. A given estimator may perform poorly on a given 

population. Furthermore, survey sampling methods are geared 

toward estimation rather than decision. Audit t e s t s based 

on these methods tend to control only one of the two decision 

risks faced by the auditor. 

Efforts have been made to model the substantive test ing 

problem parametrically ( i . e . impose distributional assumptions 

on the variables in the population). If such a model i s appro­

priate, or robust against violations of the assumptions, the 

resulting tests should be superior, both conceptually and in 

terms of various performance measures, to distribution-free 

methods. In th is t h e s i s , the acceptance sampling model of 

compliance test ing i s extended for use in substantive test ing. 

I ca l l th i s extension "monetary unit acceptance sampling" 

(MUAS). While MUAS i s not an exact t e s t , i t i s designed to 

be conservative re la t ive to ordinary acceptance sampling (here 

called "physical unit acceptance sampling" (PUAS)). Thus, 

under normal audit conditions, the decision r isks of MUAS 

will be bounded by the decision risks of a corresponding PUAS 

model. One of the drawbacks of conserva ive t e s t s i s inef f i ­

ciency, i . e . more sample information i s obtained than i s neces­

sary to attain allowable risk leve l s . However, the extension 

from PUAS to MUAS includes, in particular, sequential plans. 

Sequential implementation can, under certain conditions, s ig ­

nif icantly reduce the inefficiency of MUAS. I present two 

sequential MUAS plans. One i s derived from c las s i ca l sequential 
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acceptance sampling. The other is based on a new Bayesian 

sequential acceptance sampling model. It is hoped that MUAS 

will not only be applicable in audit testing but will also 

have positive pedagogical value by providing a unified frame­

work (acceptance sampling) within in which to teach audit 

sampling. 

The extension from PUAS to MUAS is contained in Chapter 4. 

Included in this chapter are the results of a Monte Carlo 

study on the performance of MUAS. Intervening chapters con­

tain a review of the principal sources of the new models and 

the development of PUAS models, including the proposal of 

sequential plans appropriate for audit use. 
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CHAPTER 2 

THE DEVELOPMENT OF STATISTICAL TESTING MODELS IN AUDITING 

Statistical auditing in the United States has a history 

of some 50 years. It is not my purpose here to attempt a 

reconstruction of this history. Rather, I intend to recount 

elements of the research in audit sampling that are pertinent 

to the development of the monetary unit acceptance sampling 

(MUAS) models of Chapter 4. These models draw primarily 

upon three research strains in statistical auditing: clas­

sical acceptance sampling (both fixed sample size and sequen­

tial plans), Bayesian testing models, and monetary unit samp­

ling (MUS) models. Although MUS models have proliferated in 

recent years, the essential contribution in MUS, for purposes 

of the research at hand, occurred in 1961. More recent work 

stems from Anderson and Teitlebaum (1973) and forms a body 

of work that is not particularly germane to the development 

of MUAS. Accordingly, we will not review much of the re­

search in MUS. 
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The history of s t a t i s t i c a l auditing has not been with­

out controversy, and the central controversy has involved 

the very purpose of s t a t i s t i c s in auditing. Early advocates 

of s t a t i s t i c a l auditing t a c i t l y or e x p l i c i t l y assumed that 

a s t a t i s t i c a l model for audit use should be designed to d i s ­

criminate between acceptable and unacceptable values of some 

s ignif icant quantity, this discrimination being done with 

known risks of error. In s t a t i s t i c s , such models are referred 

to as (hypothesis) t e s t s . The ear l i e s t s ta t i s t i ca l t e s t s 

proposed for audit use were variants of acceptance sampling, 

and the quantity being tested was the population error rate. 

Beginning in the l a t e 1950' s , this view of the function of 

s t a t i s t i c s in auditing came under increasing attack (see , 

in particular, Trueblood and Cyert (1957)). The c r i t i c s f e l t 

that s ta t i s t i ca l t e s t s supplanted auditor judgment. They 

argued that s t a t i s t i c a l models should provide an estimate 

of the value of some significant quantity. The auditor was, 

then, free to use t h i s estimate as he saw f i t . 

The watershed i n this controversy came in 1956 with the 

publication of Stat i s t i ca l Sampling f o r Auditors and Accountants 

by Vance and Neter. The f i r s t half of this handbook i s de­

voted to an exposition of acceptance sampling (both fixed 

sample size and sequential) • The l a t t e r half i s devoted to 

estimation. By 1962, a similar handbook (by Hill et a l . ) 

omitted acceptance sampling entirely. The estimation tech­

niques were taken from survey sampling. While the advocates 

of estimation were unhappy with s t a t i s t i c a l tes ts , they 
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provided their own framework within which s t a t i s t i c a l e s t i ­

mates were to be used in auditing. The s t a t i s t i c a l estimate 

of the true value should be used "to judge the reasonableness 

of the book figure" (Vance and Neter (1956, p . 169)), where 

book figure refers to the amount recorded by the c l ient . 

This judgment was to be effected by means of a confidence 

interval for the estimate (and, thus, we wi l l refer to such 

uses of s t a t i s t i c a l estimates as confidence procedures). A 

100(1-<*)# confidence interval i s designed such that, on re­

peated tr ia l s of the same procedure on the same population, 

100(1- oO# of the estimates w i l l f a l l in the interval. If 

the estimator used i s unbiased, we may conclude that, in 

100(1- o0# of these t r i a l s , such a confidence interval con­

structed about the estimate w i l l contain the true value. 

The rule, then, was to construct a confidence interval 

about the estimate; i f the book value f e l l in this interval , 

i t was reasonable; otherwise i t was not. And, i f this was 

indeed the rule, we must ask precisely what Trueblood and 

Cyert (1957, p. 20) meant when they wrote, "There are no ex­

p l i c i t rules for decision-making that are bui l t into the sample, 

nor assumed for purposes of sample s ize computation." 

The width (or precision) of the confidence interval de­

pends on both ot. and the standard deviation of the estimate, 

which, in general, depends on sample s i ze . Thus, i f a cer­

t a i n precision i s desired, i t i s necessary to set c< before­

hand and draw the necessary sample size to achieve this pre­

c i s ion . (Technically, i t may not be possible , with a s ingle 
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sample, to guarantee that a given precision will be attained. 

But sample size can subsequently be increased if the desired 

precision is not attained.) Now, Trueblood and Cyert must 

have meant that the oc used for choosing sample size need 

not be the X used to construct the confidence interval. 

While this is literally true, the practical consequences 

regarding audit judgment are interesting. Consider, for ex­

ample, an auditor who sets oc at .05 to choose sample size 

in an estimate of inventory value. The book figure is, say, 

5500,000, and the estimate is $470,000 - 320,000, if *=.05 

is used in constructing the interval. Assume that the audi­

tor <*» satisfied with precision of 530,000. Apparently, he 

is f ( to decrease ol until the confidence interval just 

contains the book value. Since ex represents (in part) the 

risk that the interval does not contain the true value, 

reducing that risk should not be open to criticism. 

There are several problems here that were not addressed 

in the audit literature until 1972. In that year, Elliott 

and Rogers published an influential critique of the methods 

used to implement confidence procedures in auditing. They 

claimed that confidence procedures were being used to make 

decisions. As such, the auditor faced two risks. Not only 

did he face the risk that the confidence interval did not 

include the book value when it was reasonable (type I risk), 

he also faced the risk that it included the book value when 

it was unreasonable (type II risk). By decreasing ot in 

order to accept the book value, our hypothetical auditor, in 
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the inventory example above, increased one risk (type II ) 

while decreasing the other (type I ) . E l l i o t t and Rogers 

went on to show how confidence procedures could be imple­

mented to control both r i sks . Although E l l i o t t and Rogers 

argued for the duality of confidence procedures and hypothe­

s i s t e s t s , they preferred the framework of the former. And, 

at l eas t in part because of t h i s , they introduced a new prob­

lem in the use of confidence procedures in auditing: materi­

a l i ty al location. (Materiality, as an audit construct, re­

fers to the auditor's assumption that some degree of error 

i s serious enough to affect the financial decisions of a rea­

sonably prudent investor. This degree of error i s called 

materia^. A lesser degree of error i s •innrm-ha-r̂ ai and would 

not affect those decis ions.) Materiality allocation attempts 

to address the problem of sett ing desired precision when the 

results of more than one confidence procedure are going to 

he joint ly considered. We w i l l not pursue this matter here 

beyond the following remarks: ( i ) in the test ing framework 

(which we wi l l be adopting), i f we combine the results of 

several t e s t s , the quantity of concern i s the r isk of two or 

more incorrect decisions, not some measure of combined pre­

c i s ion , and ( i i ) in MUS models (of which MUAS i s one example), 

materiality i s stated as a percentage of book value, and al ­

location of some absolute quantity i s irrelevant. Some ten 

years la ter , the E l l i o t t and Rogers position was, by and large, 

incorporated in the professional audit standards in the United 

States (SAS No. 39)* Thus, MUAS, although cast ent ire ly in 
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the testing framework, is reasonably consistent with current 

audit standards. 

There were, however, more fundamental problems with many 

of the confidence procedures advocated for audit use. The 

accuracy of the intervals depended on the large-sample behavior 

of the estimators used. Typical audit sample sizes were un­

critically assumed to be "large enough" to insure that the 

estimator was normally distributed. Simulations conducted 

by Kaplan (1973) and Neter and Loebbeeke (1975, 1977) provided 

evidence that this assumption was not necessarily warranted. 

This result must be compared with acceptance sampling (to 

which we turn shortly). With acceptance sampling, the audi­

tor's problem was modeled such that the test statistic fol­

lowed a known distribution—no large-sample assumptions were 

needed. Unfortunately, acceptance sampling had been applied 

successfully only for certain compliance tests. In 1961, 

van Heerden extended the acceptance sampling model for use 

in substantive testing. However, this accomplishment ^s&t 

unnoticed by the audit profession in the United States. We 

will return to van Heerden in the discussion of MUS below. 

We now turn to the development of classical acceptance 

sampling- in audit tests. Carman (1933) appears to have made 

the first contribution to statistical auditing in the United 

States. Carman proposed a discovery sampling model to detect 

the presence of fraud in a population of similar transactions 

(e.g. cash disbursements). By defining a fraudulent trans­

action as an error and sampling at random with replacement 



www.manaraa.com

11 

from the population,, Carman showed that the total number of 

errors observed obeyed a binomial distribution. This distri­

bution has two parameters: n (sample size) and p (error rate). 

The error rate is unknown. If p>0, then, no matter what n 

is, there is some risk that our sample does not contain an 

error, and hence we conclude, incorrectly, that p=0 (i.e. a 

type II decision error). If, however, we are willing to set 

some minimum error rate p2» 0 «< p2 < 1» that we deem signifi­

cant, we can control the risk of failing to detect this (or 

a higher) error rate by choosing the appropriate sample size. 

The test, then, is of the form 

hypothesis: p«0 

alternative: p«p2 

(We will consistently use simple hypotheses, i.e. those that 

specify only one point. In the classical construction, the 

simple alternative above is equivalent to the composite al­

ternative p2-p2») Carman adopted the decision rule that if 

we observe one or more errors, we reject the hypothesis, other­

wise we accept. The critical value (the minimum number of 

errors needed to reject the hypothesis) need not be set higher 

than one, since, if even one error is observed, the hypothesis, 

is certainly false. And, by requiring at least one error 

in order to reject, we face no type I risk. However, if we 

accept, there is some risk of having done so unfairly. Carman 

showed that this risk—type II risk—could be controlled by 

choosing sample size—the larger the sample size, the smaller 

the type II risk. Carman also observed that this plan may 



www.manaraa.com

12 

be implemented sequentially. If we observe an error, the 

tes t may be terminated and the hypothesis rejected. This 

procedure should reduce average sample s i ze but there i s no 

effect on decision r isks (type I risk remains zero). 

Although several ar t ic les in the late 1940*s and early 

1950's dealt informally with the use of acceptance sampling 

in auditing, the f i r s t formal exposition in the audit l i t e r ­

ature seems to have been Vance and Neter (1956). The hypo­

thes i s of a zero error rate (used in discovery sampling) i s 

rarely jus t i f iable in test ing accounting controls since the 

auditor usually does not expect the control to function per­

fec t ly . If the auditor both expects a posi t ive error rate 

and can tolerate a certain amount of error in the population, 

use of discovery sampling w i l l result , more or l e s s often, 

in rejection of the hypothesis when, in fact, the population 

error rate i s at an acceptable l e v e l . While formally the 

auditor faces no type I r isk, t h i s i s irrelevant because the 

problem has not been correctly modeled. Acceptance sampling 

is designed to discriminate between an acceptable (but posi­

tive) error rate and an unacceptable error rate. The t e s t 

is of the form 

hypothesis: P=P-i 

alternative: P=P2 

where 0 < p , < p 2 < l and p, i s an acceptable error rate. We 

now face both type I risk (reject unfairly) and type I I risk 

(accept unfairly) . To control these r i sks , we now manipulate 

both sample s ize and c r i t i c a l value. (Critical value can no 
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longer be independently set at one as in discovery sampling.) 

The implementation of sequential acceptance sampling 

presents difficulties far beyond those of sequential discovery 

sampling. However, in the 1940'3, Wald developed a sequential 

test of hypotheses, one form of which was sequential accep­

tance sampling (Wald (1947)). Vance (1950) adapted Wald13 

test to audit problems. In sequential acceptance sampling, 

we must decide at each sampling stage (e.g. after each obser­

vation) whether to accept, reject, or continue to make obser­

vations (because both the type I and II risks of an immediate 

decision are too high). This amounts to finding, at each 

sampling stage, an appropriate number of observed errors at 

which to accept and an appropriate number at which to reject. 

If the number of observed errors lies between these two num­

bers, we continue to make observations. The advantage over 

fixed sample size acceptance sampling is that, on average, 

we will make decisions at the same risks but with fewer obser­

vations. Further, as Vance was quick to recognize, most audit 

tests are, in fact, conducted sequentially. A sequential 

sampling plan represented a natural formulation of the audit 

problem. 

Since the notion occurs in other discussions of sequen­

tial sampling, we should note that Vance committed a serious 

breach of the statistical testing paradigm. He suggested 

that one of the benefits of sequential testing was that it 

allowed the auditor to continue sampling if he was dissatis­

fied with the result at any given stage. This amounts to 
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choosing the decision rule after the data have been observed. 

If the auditor wishes to control decision risks at stated 

levels, he is not free to adopt a new decision rule in the 

event that the results under the old rule are not to his 

liking. A correct formulation for the behavior suggested 

by Vance is a sequential plan in which type I risk is at 

lower than allowable levels at early sampling stages and rises 

gradually to the allowable level at late stages. Roberts 

(1976) proposed such a plan. It is a four-stage sampling 

plan, truncated at the fourth stage. One of the shortcomings 

of Vance's proposal was the absence of any truncation rule. 

Thus, at least occasionally, sample size could be quite large. 

Truncation, however, affects decision risks and complicates 

analysis of the behavior of the test. In part to overcome 

this difficulty and in part to simplify implementation, Roberts 

proposed grouping the observations to yield a four-stage test. 

(A more accessible source for this sampling plan is Roberts 

(1978) p. 57ff.) Implementation difficulties have, until 

recently, plagued sequential sampling. The advent of computer-

assisted auditing, based primarily on microcomputers, has 

radically altered this situation. 

Despite the impressive logic of these acceptance sampling 

models, it appeared for some time that they could not be ap­

plied to test the fairness of a monetary value (i.e. a substan­

tive test). Vance (1950) had already recognized the desira­

bility of such an extension but considered it impossible due 

to the absence of a necessary relationship between the occurrence 
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of an error and the monetary value of that error. In 1961, 

van Heerden offered an ingenious solution to th i s dilemma. 

The monetary value of interest i s typica l ly contained in a 

balance composed of subunits defined by the audit c l ient ( e .g . 

an inventory balance composed of various items or parts) . 

Van Heerden suggested that , instead of viewing th i s balance 

as a population of natural subunits, we view i t as a popula­

tion of monetary units (dol lars , pounds, francs, marks, yen, 

e t c . ) . For convenience, we w i l l refer to these units as 

"dollars." We agree to c la s s i fy a dollar as either f i c t i t i o u s 

(an error) or sound (a nonerror). The error rate now becomes 

an index of the reasonableness of the book value: a high 

error rate indicates material overstatement; a low error rate 

indicates immaterial overstatement. This general approach 

i s called monetary unit sampling (MUS). 

A d i f f i cu l ty arises when we actually attempt to identify 

a particular sample dol lar as f i c t i t i o u s , because the c l ient 

accounts for subunits rather than the individual dollars that 

comprise the subunits. If we are wil l ing to adopt a discovery 

sampling model, this identif ication problem i s not serious . 

If any of our sample dollars belong to a subunit that i s over­

stated, we may safe ly reject the hypothesis that p=0. But 

once we adopt the more r e a l i s t i c acceptance sampling model, 

the ident i f icat ion problem i s c r i t i c a l . Van Heerden not 

only solved thib problem but solved i t in such a way that 

the whole apparatus of acceptance sampling worked exactly 

as i t had in the nonmonetary s i tuat ion. In particular, the 
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number of observed errors could be constrained to obey the 

binomial distribution. (Van Heerden's solution is formally 

considered in Chapter 4, including a proof of this latter 

claim.) 

Lest I overstate van Heerden's contribution, let me add 

that, as written, van Heerden proposed an MUS discovery samp­

ling plan. While he provided a methodology to implement 

MUS acceptance sampling, he does not make details of suih 

an implementation clear, referring only to certain (uniden­

tified) tables to aid the auditor if one or more errors are 

actually observed. It does appear that van Heerden used the 

discovery sampling model simply because it requires fewer 

observations than an acceptance sampling model with the same 

alternative. Thus, even if an error is observed, it is not 

clear that van Heerden is willing to reject the hypothesis. 

Similarly, in a reference to the sequential implementation 

of his plan (again, he provides no details), he repeats Vance's 

contention that the auditor can continue sampling if the ini­

tial result is "unsatisfactory." 

The last research strain that we draw upon is the Bayes­

ian testing framework. By and large, the work in Bayesian 

models in auditing has been in estimation and involves a re­

formulation of confidence procedures. In the Bayesian frame­

work, estimation may naturally lead to considerably more compli­

cated models than testing. The essential elements of Bayesian 

testing were introduced in the audit literature by Kinney 

(1975 ). Kinney assumed that there are two possible "states 



www.manaraa.com

17 

of nature" facing the auditor: ( i ) the book value i s materi­

ally correct, and ( i i ) the book value i s materially incorrect. 

The auditor must decide which of these states actually holds. 

As in the c lass ica l acceptance sampling framework, the auditor 

can make two decision errors—type I and type II . However, 

the r isks of these errors are defined not as probabil it ies 

but as expected los ses . That i s , we define a los s function 

that spec i f ies our losses for a l l possible outcomes (with 

two possible decisions and two possible states of nature, 

there are four possible outcomes). Kinney's l o s s function 

consists of a variable sampling cost , a fixed cost to access 

the sampling frame, and a fixed cost for an incorrect deci­

sion (which may vary as to the type of decision error). The 

auditor wishes, in some sense, to minimize his expected l o s s . 

However, of two competing decision rules (sampling plans), 

one may have lower expected loss under one state of nature 

and higher expected loss under the other. As i t stands, these 

rules are noneomparable. The Bayesian approach solves this 

problem by requiring that we weight the expected losses using 

a prior distribution on the states of nature. Thus, if , be­

fore sampling, we f e e l that one state i s more l ike ly than 
* 

another, the expected loss under this state plays a more s i g ­

nificant role in our choice of decision rules, rfith the ad­

dition of a prior distribution and loss function, the accep­

tance sampling model goes through much as before. 

Although the idea of choosing a decision rule with mini­

mum risk i s appealing, we may ask if there i s any set of 
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principles that requires us to do so. If we define loss as 

negative utility and if our utility function obeys the von 

Neumann-Morgenstem (1953* p. 23) axioms, then this question 

may be answered affirmatively. This defense of Bayesian 

procedures has been expounded at length by Savage (1972) and 

Lindley (1971). 

In the following chapters, I present both classical and 

Bayesian testing models. I assume that all of the models 

can be usefully applied to assist the auditor in making cer­

tain routine (but nonetheless Important) decisions. Juxta­

position of the two approaches to the same problem will, it 

is hoped, facilitate a reasoned choice between them. 
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CHAPTER 3 

A STATISTICAL COMPLIANCE TESTING MODEL: 

PHYSICAL UNIT ACCEPTANCE SAMPLING 

Auditors perform a variety of tests. Conceptually, two 

types of audit tests are defined in the professional audit 

standards in the United States (SAS No. 1): compliance tests 

and substantive tests. In compliance testing, it is often 

reasonable to identify the object of interest as an error 

rate in a population of similar transactions. An error in 

this situation is the failure of some control feature in the 

accounting system that generated the transactions. For ex­

ample, a proper cash disbursement should exhibit, among other 

things, an authorized signature on the document effecting 

the disbursement. The lack of an authorized signature can 

be defined as an error. Typically, the auditor expects the 

population to contain some errors (i.e. controls are not ex­

pected to operate perfectly) and is interested in discrjmi-

nating between an acceptably low error rate and an unacceptably 
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high e r ro r r a t e . 

Such s i tua t ions correspond very closely with the quality 

control inspect ion setup, in which production l o t s a re exa­

mined with the aim of discr iminat ing between lo t s in which 

the r a t e of defect ive items i s acceptably lew and those in 

which i t i s unacceptably high. Acceptance sampling i s a s t a ­

t i s t i c a l procedure f i r s t designed t o model t h e qua l i ty control 

inspection se tup. Subsequently, acceptance sampling was 

adopted for use i n audit t e s t i n g . 

In t h i s chapter , we consider the acceptance sampling 

model in several forms. Our purposes are twofold. F i r s t , 

the development presented in Chapter 4 extends the use of 

acceptance sampling to substantive t e s t s of the fa i rness of 

a monetary value. Thus, the models of th i s chapter a r e of 

broader app l i cab i l i t y than may be immediately apparent. (In 

part to d i s t ingu ish these models from the extension i n Chapter 

4 and in part because of the modifications c i t ed below, we 

formally refer to the models of t h i s chapter as physical unit 

acceptance sampling (PUAS). But, informally, we r e t a i n the 

general term acceptance sampling.) Second, I propose several 

modifications to acceptance sampling for audi t use . These 

include (1) a simplified Bayesian framework for acceptance 

sampling that should prove easier t o Implement than p r e v i ­

ously proposed Bayesian models for audit t e s t s , ( i i ) a new 

Bayesian sequent ia l acceptance sampling model, and ( i i i ) algo­

rithms to compute the exact decision r isks and approximate 

expected sample s izes of the proposed sequential tes ts—these 
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algorithms should be efficient for typical audit sample 

sizes (say, n^200). Before discussing PUAS as such, we 

briefly consider the general testing framework within which 

the PUAS models will be developed. 

Acceptance sampling is one form of statistical test. 

To conduct any statistical test, we must model our problem 

along the following lines. We identify the characteristic 

of interest with the random variable (or vector) X. A 

realization of X will be denoted as x, and the set of all 

possible realizations will be denoted by^., the sample 

space. We assume that the distribution of X (or of some 

function of X) is one of the family JP : p€.(P| indexed by 

the parameter p. Two subsets of the parameter space (r are 

of interest: Q\ ind (r2. ** i a usual, but not necessary, 

that these subsets exhaust the parameter space. For reason­

able tests, the subsets must be disjunctive. Two hypotheses, 

the null and the alternative, are entertained with regard 

to p, namely, H.: peCR, and H2: pS.0%. We will consider 

the case where these two subsets are restricted to one point 

each, i.e. a test of simple hypotheses: 

v«i . (x) 
H2: p=p2 

(We will occasionally refer to the null hypothesis, H., 

simply as the hypothesis. Furthermore, the terms accept 

and reject, when used alone, should be understood to refer 

to the null hypothesis rather than the alternative hypothesis.) 
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A finite action space 7^ is available, usually consisting of 

a.=choose H, (accept the null) 

a2=choose H2 (reject the null) 

For sequential tests, we must extend this space to Include 

the nonterminal action 

a,=continue sampling (3) 

We seek a decision rule d: ̂ . " ^ ^ , in a given class oD of 

rules, with minimum risk. Risk is defined differently in 

the classical and Bayesian testing frameworks. Two decision 

errors may occur: 

type I error: choose H« when H. is true 
2 1 (4) 

type II error: choose E, when H2 is true 

We will refer, on occasion, to the operating characteristic 

(OC) function and the power function. They are defined by 

OC function: <X(p)=P {d(X)=ax} 

power function: /G(p)=P {d(X)=a2} 

The OC function gives, for all p, the probability of taking 

action a, (accept H.). The power function gives, for all p, 

the probability of taking action a2 (reject H,). For proper 

tests, o(.(p)+/3(p)=l. 

3.1 N-P Fixed Sample Size Acceptance Sampling 

Neyman-Pearson (N-P) tests are an important subset, a 

most powerful subset, of likelihood ratio (LR) tests. My 

description of N-P testing follows Bickel and Doksum (1977). 

In the N-P approach, risk is defined as the probability 

of decision error (error probability for short). There are 
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two risks corresponding t o the two types of decision error: 

type I r i sk: P„ fd(X)=a,J 
P l f , x ( 6 ) 

type II risk: P {d(X)=a1} 

We may also s ta te these r i sks In terms of the OC and power 

functions: 

type I r i sk: /3(p ) = i - w ( p ) 
x x (7) 

type II r isk: <*(p2)=l- /3(p2) 

The type I r i s k of d is cal led the l e v e l of the t e s t and i s 

conventionally denoted <X. Type II r isk of d i s conventionally 

denoted /3 , and 1-/3 is referred to as the power of the t e s t . 

The N-P criterion i s to f ind , within the class of a l l fixed 

sample size decision rules with leve l at least OC , the most 

powerful rule. Thus, we minimize type II risk for a given 

type I risk. The N-P Lemma states that the most powerful 

rule for problem (1) is of the form: 

"a^ i f f n ( x ; p 2 ) / f a ( x ; p 1 ) < D , D^O 
ia(x)=» | 

a 2 otherwise 
(8) 

where f^xjp) i s the (conditional on p) frequency function 

( i f X i s discrete) or density function (if X is continuous) 

of Xs(X. , . . . , X ) , and D i s some constant. The rat io of fre­

quencies (or densit ies) i s called the likelihood ratio (LR) 

and wi l l be denoted by 

l n (x ,p 1 ,p 2 )= f n (x ;p 2 ) / f n (x ;p 1 ) for x = ( x 1 , . . . , x n ) (9) 

( I f x=x±, the LR wil l be denoted by l ( x i , p , , p 2 ) . ) 

I t is true in general that we can find a decision rule 

based on a suff ic ient s t a t i s t i c for p that i s risk-equivalent 
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to any rule using the sample information i t se l f . Often, the 

decision rule can be simplified by finding a tes t s t a t i s t i c 

T<X) that i s sufficient. The equivalent rule i s 

fa , ±f5L(x)«t<C 
d n ( x ) - | ^ n (10) 

I a2 otherwise 

where the constant C i s called the c r i t i c a l value. The c r i t i ­

cal region, where da(x)»a2 , i s £x: Tn(x)=t^Cj. The decision 

rule i s specified by choosing c r i t i c a l value C so as to attain 

a desired l e v e l and sample s ize n so as to attain a desired 

power. That i s , we seek the smallest C and n such that the 

following conditions hold: , 

/ J ^ M ^ K W I * * (11) 

(The rightmost inequalit ies reflect the poss ib i l i ty that exact 

l eve l and power may not be attainable for discrete distribu­

t ions , unless we randomize over decision rules.) 

I present the following example, which may be construed as 

a compliance t e s t , in some detai l . The same example wi l l be used 

for the alternative models discussed la ter . The use of one 

example should f a c i l i t a t e comparison of the models. 

Example 3 .1 . An audit client maintains a purchased parts 

inventory on perpetual records. It i s carefully controlled, 

and the c l i ent would prefer that the auditor rely on the per­

petuals rather than require a complete count. The auditor 

agrees to t e s t the perpetuals. One procedure in t h i s test w i l l 

be the comparison of recorded and on-hand quantities for a 
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sample of items. In this procedure, the auditor is primarily 

concerned with the proportion of errors rather than the size 

of the errors, which he expects to be uniformly small. The 

auditor decides to model the problem statistically as follows: 

(i) a difference between recorded and on-hand quantities 

will be treated as an error (all items are errors or 

nonerrors) 

(ii) a counted item will be identified with the random vari­

able X according to the rule: 

(1 if the ith item is an error 

0 otherwise 

(iii) selection of items to count will be made randomly with 

replacement from the perpetual records (the sampling 

frame) 

Under these conditions, the JX.\ are independent and identi­

cally distributed (i.i.d.) binomial random variables with 

parameters 1 and p, where p is the (unknown) error rate. In 

simpler notation, X^binomial(l,p). (See Appendix A for this 

and other distributions mentioned in this chapter.) Further, 

Sn»^? , X./vbinomialtn,?) and is sufficient for p. 

The auditor's problem is now transformed into a test for 

p. The client claims the error rate does not exceed .01. The 

auditor decides that an error rate of .05 or more is unaccep­

table. He proposes to test 

H1: p=.01 

H2: p=.05 

The N-P decision rule is of the form (10): 
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dn(x) = 
C a, i f s < C 
, L̂ n 
k a 2 otherwise 

where 3
n

a Z i - i x i * ^° **n(* * n e cr i t ica l value and sample s i ze , 

the auditor must specify the desired l eve l and power of the 

t e s t . He chooses .10 and .85 respectively. Thus, he wants 

/3(.oi)=:P>01{sa^c^.io 
/3(.05)»P#05iSn>,c5^.85 

Using binomial tab les , we find n=94 and C=3 i s an acceptable 

t e s t , with /J(.01)=.069 and /3( .05)=.355. The auditor proceeds 

to se lect randomly with replacement 94 items from the perpet­

uals . He then counts each item and records the errors observed. 

If these equal or exceed 3, H, i s rejected and the error rate 

assumed to be .05. 

As a practical matter, i f tables are to be used, i t is 

more convenient to use the Poisson approximation to the bino­

mial distribution. I provide a short table of the cumulative 

Poisson distribution in Appendix B. To use the Poisson approx­

imation, set q=np. In Example 3 .1 , q-,=.01n and q2=.05n, thus, 

q2=5q-j. For any given q, find the smallest 0 that gives a 

l eve l of .10 or l e s s . Then check the power obtained with this 

C for 5q. For Example 3 .1 , we try, say, q,=1.0. The smallest 

C i s 3 , giving a l e v e l of .080. The power of this t e s t i s 

found under q2=5 with C=3. I t i s .875—slightly high. With 

C=3. the smallest q2 possible i s 4.70 with a power of .848 

(assuming we are wi l l ing to round to .85). Then q1=4.70/5=.94 

and l inear interpolation gives a level of .070. Thus, n=94 
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and C=3 is an acceptable test. 

Some care must be taken in using tables of discrete dis­

tributions, since the underlying function is not smooth. For 

example, although n=94 was the best we could do if C=3, we 

have not yet ruled out the possibility that a smaller n with 

C=2 might work. In fact, n=68 with C=2 gives acceptable power 

but an unacceptable level. Nevertheless, this test would be 

preferable to any other using a sample size between 68 and 94 

with C=2. 

We now consider a post-experimental measure of risk. If 

we accept E,, then less than C errors were observed, and we 

would have accepted H, even if C had been set as low as s+1, 

where we observed s errors. We define the achieved power of 

the test as P {s £, s+1^. Similarly, if s^C, we would have 

rejected H. even if £ had been set as high as s. We define 

the achieved level of the test as P j S >, s]. (The achieved 

level is more commonly called the p-value of the test.) Now, 

the achieved power and level of the test will equal the desired 

power and level only if s=C-l and s=C, respectively. When 

this is not so, the test has "overshot" its goal, and risk has 

been reduced below desired levels, at the expense of some un­

necessary sampling. Assume, in Example 3.1, that we observe 

s=l errors and accept E,. Since we controlled power at .85, 

we know that the chance of this result if H2 is true does not 

exceed .15, but apparently it is less. Referring to q2=4.70 

in Appendix B, we find achieved power of .991. That is, there 

is a chance of about .01 of this result if H- is true. 
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Alternatively, i f we observe s=5 errors and reject H,, we find 

under q-j_=.94 an achieved leve l of about .003. Achieved power 

and level provide a post-experimental measure of our "confi­

dence" in the decision. 

Given a posit ive probability of "overshooting", the N-P 

t e s t apparently can be improved upon by some procedure that 

"stops" nearer the goal. By the N-P Lemma, no fixed sample 

s i ze procedure can improve upon the N-P t e s t . However, Wald's 

sequential probability rat io t e s t , which we wi l l consider in 

the next sect ion, i s designed precisely to reduce t h i s amount 

of "overshoot" and does improve on the N-P t e s t . 

The model presented in Example 3.1 i s isomorphic with the 

(fixed sample s ize) acceptance sampling model in quality con­

tro l inspection, where sample s ize i s small re lat ive to l o t 

s i ze or sampling i s with replacement. We extend the model to 

discovery sampling in Example 3.2 below. This example wi l l 

not be presented for alternative models discussed l a t e r . 

Example 3 . 2 . An audit c l ient processes payroll on com­

puter. The payroll register i s generated under control of a 

program that has been in use for several years. One of the 

auditor's procedures t e s t s the crossfooting accuracy of the 

register . The c l ient claims that no crossfooting errors occur. 

The auditor w i l l tolerate an error rate of l e s s than .05. He 

proposes tes t ing 

H^ p».00 

H2: p=.05 
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The binomial distribution i s degenerate at p=0, hence i t would 

seem impossible to compute a level for this tes t . However, 

i f the auditor chooses C=l, he cannot reject unfairly, i . e . 

he faces no type I risk. Thus, set t ing C=l, n may be found 

as before by controlling power. If desired power i s .85, we 

f ind the smallest acceptable q0 to be 1.90 giving n=38 and 

power of .850. 

3*2 Wald Sequential Acceptance Sampling 

Regardless of sampling plan, the audit of the sample 

( i . e . the fieldwork) proceeds sequentially in compliance 

t e s t s . In fixed sample s i z e t e s t s , i t i s apparent that, as 

soon as a c r i t i c a l number of errors i s found, auditing of the 

sample may stop and the nul l may be rejected. But there i s 

no similar shortcut to accepting the nu l l . In discovery samp­

l i n g , th is i s reasonable, since acceptance requires an ent irely 

error-free sample. But, in acceptance sampling, there may 

very well come a point during the test when one or the other 

action becomes highly improbable. It would be advantageous 

to have a rule that t e l l s the auditor when a given action 

becomes suff ic ient ly improbable, allowing him to terminate 

fieldwork on the t e s t . More generally, the rule should indi­

cate when the risk of a given action becomes acceptably low. 

Wald's sequential probability ratio t e s t (SPRT) i s such a rule . 
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Wald developed the SPRT during the 1940's. There have 

been extensions, but my description mainly follows Wald (1947). 

Wald improved on the N-P test by enlarging the class of proce­

dures being considered. The additional procedures are those 

for which the number of observations is random. These proce­

dures—sequential procedures—terminate when evidence for one 

hypothesis becomes persuasive. The improvement is in sample 

size: for given level and power, the SPRT has a significantly 

lower expected sample size than the optimal fixed sample size 

of the N-P test. For the problem given by (l), Wald and 

Wolfowitz (1948) proved that the SPRT has the lowest expected 

sample sizes (under H. and H2) of all tests with level &. una 

power 1- /3. 

The N-P test for problem (l) rejects H. when the LR (9) 

equals or exceeds some positive constant. Wald suggested 

forming the LR after each observation. By appropriate choice 

of constants A and B (0< A< 1< B<co ), a test of level ot. and 

power l-(3 is 

fa^ if ln(x,Pl,p2)<A 

dn(x)=ja2 if ln(x,Pl,p2)£B (12) 

^ a, otherwise 

where action a* is "continue sampling." This is the extended 

action space given by (2) and (3). 

As in (10) above, T n W = S n is a sufficient statistic, 

and the decision rule given by (12) is risk-equivalent to 
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(*! lf T n ( x ) $ a n 
dn(x)-ja2 if T n(x)}r n (13) 

I a, otherwise 

where afl and rn are, respectively, integer-valued acceptance 

and rejection numbers. These numbers may be determined from 

the LR bounds A and B as follows (see Wald (1947, p. 90ff) for 

the details of this derivation): let 

W s s P 2 / p l / N 

(14) 

y-(l-p2)/(l-Pl) 

and 

u=(log A - n(log y))/(log w - log y) 
(15) 

v=(log B - n(log y))/(log w - log y) 

Then, a is the largest integer <> u, and r is the smallest 

integer .̂ v. 

The test in (13) is completely specified once we have 

chosen the bounds A and B. Unfortunately, these bounds depend 

upon the sampling distribution of the LR and, so, may be dif­

ficult to determine. However, Wald proved that 

Afc/3/(l-o<.)=A' 
(16) 

B$(l-/3)/o<-B' 
Replacing A and B with A' and B' results in a change in risks 

from o*. and 3̂ to oO and /V. wald showed that OC' + /9 '< c*+/3 • 

He also obtained useful approximations for the OC function and 

the ASN (expected sample size) function of the SPRT. We will 
not pursue these results further due to considerations raised 

in the following paragraph. 
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The SPRT is only one of many possible sequential tests. 

Its distinguishing characteristic is the use of constant bounds 

for the LR (i.e. A and B do not depend on sampling stage n). 

Termination occurs only when one or the other bound is reached 

or exceeded. The SPRT possesses certain optimal properties— 

the result obtained by Wald and Wolfowitz has been noted. 

But the true SPRT has not been used extensively (see comments 

by Wetherill (1975. p. 24)). Presumably, the variability of 

sample size, with its detrimental effect on the planning of 

experiments, is an important factor. Although Wald proved that 

the SPRT terminates with probability one, the sample size will 

occasionally be large relative to the expected size. To guard 

against this eventuality, various truncation rules have been 

proposed. These rules do not allow the sample size to exceed 

some stated maximum. As a practical matter, I will assume 

that only truncated sequential procedures are acceptable for 

use in audit tests, and we will restrict our search for se­

quential procedures to the class of truncated SPRTs. (It 

should be noted that it is not clear that truncated SPRTs enjoy 

any optimal properties with respect to the class of truncated 

sequential procedures.) The Wald approximations for the OC 

and ASN functions are not useful for truncated SPRTs if trun­

cation occurs at moderate sample sizes. The OC function of 

truncated SPRTs may be obtained exactly, and the ASN function 

may be approximated more closely. 

The choice of truncation rule is not obvious. Wald spec­

ulated that, if truncation occurred somewhat beyond the optimal 
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fixed sample size, the increase in decision risk would be mod­

erate. In the spirit of this speculation, a reasonable trun­

cation rule is the following: pursue the SPRT until a termi­

nal decision is made or the N-P optimal fixed sample size is 

reached; if the latter occurs, abandon the SPRT and follow the 

N-P rule. More formally, the decision rule is 

fdn(x) if n<n* 
d ( x H a*, N

 (17) 

Id (x) otherwise 
where 

*i "Vo*-* 
da(x)«^ a2 ifTn(x)£rn (18) 

a* otherwise 

and 

d 
n # ( a, if IB#(x)<C 
n#(x)=i ̂  n* (19) 

( a. otherwise '2 
•n In the present case, ̂ n(X)»V7. ^i

s^n* ^ De*ore» c i a *he 

critical value of the N-P test, and we will now refer to the 

optimal fixed sample size as a*. 

The test d (x) is derived from d (x) as follows: given 

desired risks of c< and /£, an optimal fixed sample procedure 

is selected with risks of *** and (I* not exceeding the desired 

risks; the bounds (A',B') for the SPRT are computed using <x* 

and /J* and are converted into acceptance/rejection numbers 

by the relation given in (15), except that r cannot exceed 

C. (The relation in (15) may produce an rn>C, however, once 

S =C, the test will reject at n=n* if not earlier. Hence, 

the restriction r ^ C lowers ASN with no effect on risk.) We 
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now turn t o the OC and ASN functions of d(x). 

It w i l l be necessary to take into account exp l i c i t ly 

the randomness of n in sequential t e s t s . To t h i s end, l e t 

us denote the random stopping time (the value of n when the 

t e s t terminates) by N. 

In principle, the OC function of any truncated SPRT may 

be obtained by a method described by Aroian (1968). The method 

i s based on the observation that the t e s t can terminate in 

acceptance only at the acceptance points. Similarly, i f the 

t e s t accepts, then the t e s t s t a t i s t i c at the termination 

point, S„, can only be an acceptance number corresponding to 

the acceptance point N. More formally, l e t 

^(pJssP-{Sjpi and the test accepts B̂ J (20) 

Then, 

0C(p)»I^oC i (p ) (21) 

where C i s the cr i t i ca l value of the fixed sample size test 

at n*. Note that N i s a function of i i f the t e s t accepts. 

The summation In (21) runs only t o C-1 since i t i s the largest 

acceptance number. Since a l l truncated SPRTs are proper 

t e s t s , we have Immediately /3(p)=l-c*(p). 

Example 3.3 (continued from Example 3.1) . In Example 3.1 

we found n*=94f C=3i c<=.070, and (3 =.152. Substituting in (16) , 

A'=.152/(1.0-.070)=.163 

B'=(1.0-.152)/.070=12.114 

Using the relation in (15) and bearing i n mind that we wi l l 

truncate the test at n*=94 i f no decision i s made earl ier , 
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rasLE 3.1 

Acceptance/Rejection Numbers for the Test in Example 3.3 
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FIGURE 3.1 

Acceptance/Rejection Regions for the Test in Example 3.3 
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legend: hatched l inearejaction boundary 
"x"»acceptance point 

note: the reject ion boundary i s not actually continuous but 
consists of 94 rejection points (one of which, r ,=2, 
cannot be achieved) 
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the acceptance and rejection numbers are entered in Table 3 .1 . 

Note that, while acceptance can occur at only three points 

(n=44, 84, or 94), rejection can occur at any point except 

n=l. Recall also that no r i s allowed to exceed C=3, even 

though rQ should increase to 4 at n=60 by the relation given 

in (15). We may graph th i s test as in Figure 3 . 1 , where, for 

convenience, the rejection points are not shown exactly. 

Clearly, direct computation of the power function i s not 

practicable. But the OC function i s more tractable. We 

f i r s t identify the possible paths to acceptance and then com­

pute the probability associated with that path. This method 

i s best I l lustrated by means of a tree diagram, which we will 

c a l l an acceptance tree. The acceptance tree for this test 

i s presented in Figure 3.2 along with the branch and path 

probabilities assuming pa.01. I have used the binomial dis ­

tribution here, rather than the Poisson, because some of the 

branches are quite short, i f length i s measured in numoer of 

observations, and the Poisson approximation becomes inaccurate. 

To i l lustrate the computations involved, the probability 

of the f i r s t branch is P 0 1js i g=0^=.a262. The probability of 

the leftmost branch at the second level i s P Ql{£J25=0l=•''"^8' 

where the length of this branch i s 44-19=25. This path now 

terminates, and, since i t i s the only path to acceptance with 

1=0 errors, we have 0<Q(,0l)=(.8262)(.7778) = .6426, the proba­

b i l i t y of this terminal path. There are two paths that ter­

minate in acceptance at n=84 with i=l , hence 0<1(,01) = .1086+ 

.0825=.1911. Proceeding in this way, we find c<(.01J=.934. 
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FIGURE 3.2 

Acceptance Tree for the Test in Example 3 . 3 
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note: ^probabilities computed assuming p=.01 
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Thus, the level of the test is 1-.934=.066. Computing the 

same terminal paths assuming p=.05 gives 0<.( .05)=.192. Hence, 

the power of the test is 1-.192=.808. 

Aroian's method becomes tedious when critical value and 

sample size become even moderately large. But the computation 

is amenable to computer solution, and an algorithm to perform 

this chore may be found in Appendix C, as well as an algorithm to 

compute acceptance/rejection numbers. For typical audit 

sample sizes (say, n=200 or less), this algorithm is effici­

ent. We note that the OC function of the truncated SPRT dif­

fers from that of the N-P test. We will return to this ques­

tion after considering the ASN function. 

Although Wald provided an approximation for the expected 

sample size of the SPRT, this approximation is too conser­

vative for truncated SPRTs when truncation occurs at moderate 

sample sizes. Moreover, the truncation rule we have adopted 

alters the rejection region, affecting the ASN function. (As 

was noted in Example 3*3, the rejection numbers for the true 

SPRT would have increased to r = 4 at n=60.) For these reasons, 

I will derive a better approximation to the ASN function for 

the test given by (17). The method of derivation is due to 

Wald (1947, p. 52f). 

Note that, due the truncation rule of (17), N^n*, where 

n* is the optimal fixed sample size. Partition the sum 

S„#=XT+. .,+X„» as follows: n* x n* 
Xj+.•.+Xn*=(X1+..•+XN)+(XN+1+...Xn*) (22) 
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Taking expectations and l e t t i n g E(X)=E(X1)=. , .=E(Xn #) , 

n*E(X)=E(X1+.. .+XN)+E(Xjf+1+.. .+XnJ (23) 

Since, for m>N, ^ i s independent of N, 

E(X„. n + . . .+Xn#)=E(n*-N)E(X) 
^ + 1 n (24) 

»n*E(X)-E(N)E(X) 

Substituting (24) in (23), 

E(N)=E(X1+.. ,+XH)/E(X) 

«B(S^)/B(X) 

Thus, under p, 

Bp(N)»Ep(Su)/p (26) 

where we assume p > 0 . 

Now, in the t e s t given by (17), 3^ can take on only the 

values 0,1 , . . . , C , where C is the c r i t i c a l value of dn (x). 

To assess E_(SJJ), we need the probabil it ies that Sg takes on 

these values. Define, analogously with (20), 

/^(pJaP.{Sjjai and the t e s t rejects Ĥ ] (27) 

then 
/ 3 ( P ) a ! I i - l ^ i ( P ) (28> 

Now 

The probabilit ies { o ^ p j j are provided by Aroian's method, 

but the ( ^ ( p ) } are not so eas i ly assessed. However, 

2i=i ^ ( p ^ l L i c4i(p)=cy3(p) (30) 
and /3(p) i s known. Hence 

V ^ S u O i «i(p)+0/a(p) (31) 
and 

B p (N)<( l£J iOt^pJ+OjaCp))/? (32) 
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The approximation given by (32) may be fa ir ly good i f /3(p) 

i s not too large, thus i t should be better under p=p-, than 

p=p2. We can easily improve on i t for most t e s t s . 

Let m, be the f i r s t rejection point, l e t j=r be the 

rejection number at t h i s point, and l e t nu be the las t re ­

jection point for which the rejection number i s j , i . e . 

r„ =r . . a . . . = r _ =j . Then, i f we assume that i t i s not pos-

s ib le to accept EL at or before m2, 

/2j(P)=Pp{3m2^Ji ( 3 3 ) 

where the probability i s based on the fixed sample s i ze of 

m2 observations. (Conceptually, we can extend any path for 

which N^ nu to the point nu. For any such hypothetical path, 

S > j because, i f N$m2 , we reject E, (by assumption, we 

cannot accept), and the smallest rejection number from m, to 

m2 i s j . ) Using (33), we have the approximation 

«p(H)^(Zj2 i0<i<p)+;J /a,(p)+o(ia(p)-/3j(p)))/p (34) 
If i t i s possible to accept H, prior to making nu observations, 

then the t e s t strongly favors H,. In this case, the approxi­

mation given by (32) should oe adequate, since interest wi l l 

center on the ASN when p=Pn. For t e s t s with only two rejec­

t ion numbers, i t should be noted that the approximation in 

(34) i s exact. 

Example 3.3 (continued). From the acceptance tree in 

Figure 3 .2 , we have 

C<0(.01)=.6426 

0^ (. 01)=. 1086+ .0825=. 1911 
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0<2(.01 )=.0397+.0119+.0301+.0188=. 1005 

The smallest rejection number (from Table 3.1) i s j=2. It i s 

sufficient for rejection through m=19 observations. Acceptance 

cannot occur prior i;o n=44 observations, hence 

/3 2 ( .01)»P # 0 1{S 1 9}2}«.0153 

(where the probability i s based on a fixed sample size of 19). 

As found ear l ier , / i ( .01)=.0658. Hence, we have 
E . 0 1 ( S N ^ (0).6426+(l).1911+(2).1005+(2).0153 

+(3)(.0658-.0153)=.5742 

and 

E#01(N) £.5742/.01=57.42 

Proceeding in the same manner for p=.05, we find 

E 0 5 ( N ) ^ 46.44 

(Since there are only two rejection numbers, these results 

are actually exact.) Had we used the approximation in (29) 

we would have obtained 58.95 and 51*34, respectively. Note 

that the relat ive error i s much larger when p=.05. 

To carry out the truncated SPRT, the auditor must draw 

a sample of 94 items from the perpetual inventory l i s t i n g . 

He audits these items sequentially in the order selected from 

the sampling frame. For each error observed, he increments 

the test s t a t i s t i c S„ by one. The test terminates when a =a 
n n n 

(accept) or sn=r (reject) or n=94. If the latter occurs, 

H, is accepted if there are no more than 2 sample errors. 

We will pause briefly to compare the N-P and sequential 

tests of Examples 3.1 and 3.3. The principal results are: 
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fixed sample size sequential 

.069 .066 

.855 .808 

94 57 

94 46 

Doubtless, if p=.01, the sequential test is superior to the 

N-P test, since we face, on average, lower decision risk and 

lower sampling cost. If p=.05, the situation is not clear. 

ASN has decreased even more than under B~, but we have lost 

a considerable amount of power to detect p».05. The classical 

model does not allow us to assess this tradeoff explicitly, 

and, so, we are unable to say which test is "better." 

It is, of course, possible that, regardless of savings 

in sampling cost, the increase in type II risk in the sequen­

tial test is unacceptable to the auditor. In such a case, 

we have two possible approaches. The auditor may respecify 

desired risks and recalculate the sequential test, continuing 

until an acceptable test is found. In Example 3.3, for in­

stance, desired risks were initially set at .10 and .15 for 

type I and II errors respectively. The auditor could try, 

say, .12 and .12, in light of the initial results. In this 

approach, the methodology of this section should be viewed as 

an iterative procedure designed to produce an acceptable, not 

necessarily optimal, sequential test. 

The alternative approach is to relax the restriction to 

SPRT-type acceptance/rejection regions. We expand the class 

of procedures considered to include all those truncated at n* 

level 

power 

B.01<*> 

E.05(N) 
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in accordance with the N-P rule. In this (very large) class 

we search for a "best" or, at l eas t , an acceptable procedure. 

While th is approach i s conceptually appealing, i t i s fraught 

with practical d i f f i c u l t i e s . In the c lass ical paradigm, the 

very def init ion of "best" i s problematic for sequential pro­

cedures. However, granting that a reasonable definit ion i s 

available (as i s the case in the Bayesian framework discussed 

in section 3*4) , implementation i s contingent on the discovery 

of an e f f i c i ent search algorithm. (Whether such an algorithm 

ex i s t s depends on the theoretical question of the existence/ 

uniqueness of a "best" t e s t . ) We w i l l return to this question 

after discussing Bayesian sequential procedures in section 

3 .4 below. 

3 .3 Bayesian Fixed Sample Size Acceptance Sampling 

There are two principal objections to the optimality of 

N-P t e s t s : ( i ) losses from decision errors and the cost of 

sampling are not incorporated in the analysis, and ( i i ) prior 

information ( i f any) as t o the re lat ive likelihood of the 

hypotheses i s suppressed. S tat i s t i ca l decision theory (Wald 

(1950)) attempts to rect i fy the former omission, and Bayesian 

decision theory attempts t o incorporate the l a t t e r . My pre­

sentation follows Berger (1980) for the most part. 

Prior information may be incorporated via Bayes theorem 

i f such information i s summarized as a probability distribu­

t ion . We wi l l adopt the simplest approach to prior informa­

t ion under the problem given by ( l ) . Our prior (distribution) 
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is of the form 

eCpiJ-Si. o<«i<i 
, -\ A A (35) 

«(P2)=«2
=1"gl 

Thus g(p) is a frequency function, placing all its mass at 

two points in the parameter space. 

Following Wald (1950), we assume the existence of a loss 

function. Further, we assume that it is additive in decision 

error loss and sampling cost. In the testing framework, a 

natural loss function has the following form: apart from 

sampling cost, there is no loss for correct decisions, and 

losses for incorrect decisions may vary by type of error but 

are otherwise constant. We also assume that sampling cost is 

proportional to sample size. More than this, we take the 

constant of proportionality to be one. Thus, losses will be 

measured in unit sampling costs (USC). Alternatively, a USC 

may be interpreted as-average audit time per sample item. 

Under these assumptions, our loss function is 

L(p,a,n)=L(p,a)+n ' (36) 

where the decision error los s i s of the form 
(0 i f i=j 

L t p ^ a J x ' (37) 
1 j [Z±s i f i * 

Prior information summarized in a probability distribution 

g(p) is incorporated with sample information as reflected in 

the likelihood function fn(x;p) by means of Bayes theorem to 

yield the posterior distribution gn(p;x) as follows: 

gn(p;x)=g(p)fn(x;p)/mIl(x) (38) 

where mn(x) is the marginal distribution (i.e. unconditional 
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on p) of X=(X,, . . . ,X_). In our case, given the discrete prior 

(35), (38) may be written 

g n (p i ;x)=g(p i ) f n (x;p 1 ) /£ 2
= 1 g(p j ) f n (x;p ; j ) 

(39) 

for i = l , 2 . 

Just as in the N-P framework, choice of decision ru le in 

the Bayesian sett ing involves minimizing r i s k . But r isk i s 

now defined as expected l o s s . We temporarily assume that sam­

ple s i z e i s fixed, hence sampling cost is irrelevant in the 

choice of decision rule . I use the term "decision risk" to 

mean r i sk exclusive of sampling cost. The decision r isk of a 

rule d a , where n>0 i s the fixed sample s i z e , i s defined as 

the expected loss from using dn given p: 

R(p,dn)=EpL(p,da(X)) (40) 

For our discrete parameter space, this may be written 

R(p±,dn)=Ep L(P i ,d
n (X)) f o r i = l , 2 (41) 

The Bayes decision r isk of dn i s defined as the decision risk 

weighted by one's prior be l ie fs as to p: 

r(g,dn)=EgR(p,dn)=EgEpL(p,dn(X)) (42) 

In our case, this weighting i s simply the sum over the d i s ­

crete prior (35). The Bayes principle simply states t h a t , in 

a given classoW1 of decision ru les , a rule with minimum Bayes 

decision risk should be used. That i s , le t 

r(g)=inf r(g,dn) (43) 
dat«tf* 

If a decision rule with risk r(g) ex i s t s , i t i s called a Bayes 

rule. (Bayes rules are not necessarily unique.) 
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To find a Bayes rule more explicitly, we rewrite the 

righthand side of (42) as follows: 

EgEpL(p,dn(X))=^{f L(p,da(x))fa(x;p)}g(p) 

-^{S.L(p,dn(x))gn(p;x)mn(x)/g(p)}g(p) 

= 5 { £ L(p,da(x) )ga(p;x)3ma(x) U 4 ) 

- V g ; x L ( P ' d n ( Z ) ) 

B-^tPr^CX)) i s called the posterior decision risk of d a , 

since, i f we have already obtained sample information, we 

should take the action that minimizes this r isk. Thus, we can 

find a Bayes rule by treating x as fixed and comparing the 

expected losses of the (two) possible actions. For a,, we have 

B g ; x L ( p * a l ) : s X L l KPj/a^tS^Pi;*) 
-L(p1 ,a1)ga(p1;x)i-L(p2 ,a1)gn(p2;x) (45) 

»0+K21*n(p2 J 3 c ) a Z 2 1 s n ( p 2 ; x ) 

Similarly, for a2 , we find 

E g ; x L ( p ' V = K 1 2 e n ( p l J x ) ( 4 6 ) 

Hence, a. i s the Bayes action i f K2_gn(p2;x) < E - 2 g n ( p , ; x ) . 

Substituting for the posterior from (39), we can rewrite th i s 

as 

f a ( x ; p 2 ) / f n ( x ; p 1 X K l 2 g 1 A 2 1 g 2 (47) 

The lefthacd side of (47) is simply the LR, so the Bayes rule 

is an LR test: 

'a, if la(x,p, ,p,)<D 
d"(xM X 2 (48) l-{ a2 otherwise 

where D=K
12

gl/Z21s2* 

We proceed to the more difficult question of finding an 

optimal fixed sample size n*. The decision rule in (48) holds 
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regardless of sample s ize , provided at least one observation 

i s made, since no restrict ions other than n > 0 were placed on 

n in deriving the rule. The optimal fixed sample s i ze n* i s 

that n which minimizes overall risk: 

r(g,da)»EgEpL(p,dn(X) ,n)-EgEpL(p,da(X))+n (49) 

given our assumptions with regard to the loss function. Since 

the Bayes decision risk of dn—the f i r s t term in the righthand 

side of (49)—is typical ly decreasing in n, and the sampling 

cost (here, simply n) is c lear ly increasing in n, the overall 

r isk i s typical ly s t r i c t l y convex in n . Hence, there exists 

a unique n* minimizing overall risk. The standard calculus 

approach to finding this minimum is to treat (49) as being 

continuous in n, dif ferentiate , and s e t equal to zero. But 

t h i s method often wi l l f a i l to yield a closed-form result . 

Either an approximation to (49) may be found or numerical 

methods used. 

To find n*, we must specify (49) i n terms of our problem. 

By (43), we take action a-, i f the LR i s less than some con­

stant D and take action a 2 otherwise. Specifying (49) from 

the inside out, we have 

L( ? 1 ,a 2 )P { dn(X)=a2j i f p=Pl 

Su,,i»M)*rn 3;H 
\ 

(50) 
r iL^p { i n ( x , P l , p 2 ) £ D] i f P = P l 

^ K 2 1 P p 2 { i n ( X ' P l ' P 2 ) < D 5 " P = P 2 
K 1 2 ( l - ©^(p^) i f p=px 

K21c<a(p2) i f p=p2 

where c<n(p) i s the OC function (5) of dn. Using the discrete 

•i 
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prior (35) , 

EgEpL(p,dn(X) ) - K l 2 ( l - (Xa(P l) )g1+Z21c<n(p2)g2 (51) 

And for the overall risk of decision rule dn, we add sampling 

cost: 

r(g,dn)«K12(l-c<n(p1))g:L+K2;Lo<.n(p2)g2+n (52) 

The OC function i s determined by the sampling distribution 

of the LR, which i s usually not tabled. However, we can min­

imize (52) by numerical methods, working out the sampling d i s ­

tribution at several points. We use th i s method in the next 

example. 

Example 3.4 (continued from Example 3 .1 ) . The auditor 

spec i f ies decision losses of 2^=600 and K21=1500, measured 

in USCs. Thus a type II error i s deemed more than twice as 

costly as a type I error. The auditor also spec i f i es the f o l ­

lowing prior: g ^ . 8 and g2».2. Thus, D=600( .8) / l500( ,2)=1.6. 

The remaining elements of the problem are unchanged from 

Example 3 .1 . The overall risk i s 

r (g ,d a )=(480)P < 0 1 { l a (X, .01 , .05)£ l .6J 

+(3OO)P#05{ln(X,.Ol,.05)< 1.6^+n 

To evaluate P 0 , { l a ( X , . 0 1 , . 0 5 ) £ 1 . 6 ] , select an n, find the 

smallest C such that l a ( x , . 0 1 , . 0 5 ) £ 1.6, and find ^ . o i f V ' 0 ! * 

The probability under .05 i s similarly found to be P<05{Sn<c] 

=1-P oc{Sn£OJ. To i l lustrate how this C is found, we use the 

Poisson LR, since SQ i s approximately Poisson with q=np. We 

have, then, 

(e"q 2q2
b /C! ) / ( e " q i

q i
C / C ! ) = e q i " q 2 ( q 2 / q i )

G £D 
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Since a l l terms are posit ive, th is i s equivalent to 

qx-q2+ (C) l o g (q2 /q1) ^ log D 

That i s , 

C^Uog D + q 2 -q 1 ) / log(q 2 /q 1 ) 

For D=1.6 and n»100, th i s g ives 

C^(log 1.6 + 5 - l ) / l o g 5=2.78 

The smallest integral value, then, i s C=3. P o i ( S 1 0 0 ^ ' ^ a a d 

P 05(S100< '^ c a n b e f o u n d ("^d91, q^l.O and q2=5.0) in the 

Poisson tables i n Appendix B. They are, respectively, .080 

and .125. Results of a search using various n are tabulated 

below: 

n 

*1 

*2 
C 

/a ( .01) 

oC(.05) 

r ( g , d a ) 

100 

1 .00 

5 .00 

3 

.080 

.125 

176 

120 

1.20 

6.00 

4 

.034 

.151 

182 

60 

.60 

3 .00 

2 

.122 

.199 

178 

80 

.80 

4 .00 

3 

.047 

.238 

174 

90 

.90 

4 .50 

3 

.063 

.174 

172 

Thus, n* i s about 90 with C=3 and Bayes r isk of 172 USCs. 

It i s clear from Example 3.4 that , just as in the N-P 

case, the test i n (48) may be restated, using the suff ic ient 

s t a t i s t i c E n U)=3 n , as 

, _ , i f T ( x ) < C 
dn(x)=/ 1 n (53) 

otherwise (l *2 
where C is the critical value of the test. 
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The minimization carried out in Example 3.4 i s tedious, 

but i t i s , of course, amenable to computer solution, and an 

algorithm to find n* and C i s provided in Appendix D. Using 

t h i s algorithm, we find, for th i s example, n*=88 and C=3 with 

r(g,da*)=r(g)=172.15. 

The sample s ize of 88 obtained in the foregoing example 

i s not much different from that of the N-P test (n*=95). But 

the Bayesian approach provides a considerably altered perspec­

t i v e . If the losses of 600 and 1500 are approximately correct, 

a sample size of 95 with c r i t i c a l value of 3 Implies a strong 

disposit ion for H.. This conclusion cannot be drawn from the 

type I risk of .07 and type II risk of .15 found in Example 

3 . 1 , although i t would appear that H, i s considered more l ike ly . 

In the N-P t e s t , the unstated prior and lo s s offset such that 

the auditor set desired risks at .10 and .15. While both of 

these factors«"-prior distribution and l o s s function—are 

dramatic simplifications of the decision-making process, the 

Bayesian construction i s s ignif icantly richer in context detai l . 

3.4 Bayesian Sequential Acceptance Sampling 

Conceptually, the Bayesian approach to sequential analy­

s i s i s reasonably clear: at each stage of sampling (or "time") 

n, we compute the Bayes risk of an immediate decision; we then 

compute the Bayes risk at time n+1, n + 2 , . . . ; i f the Bayes risk 

of an immediate decision i s no greater than the Bayes risk of 

going on (the minimum of the Bayes risks at times n+1, n+2, 

. . . ) , then we should stop and make a decision. Unfortunately, 
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when a l l possible sample sizes are admitted ( i . e . an in f in i t e 

horizon), the computations typical ly become unmanageable. 

Note that the problem i s usually not the terminal deci­

sion rule but the stopping ru le . Once we have stopped samp­

l ing, the Bayes rule for the appropriate f ixed sample s ize 

test i s followed. The problem has been solved by l imiting 

consideration to truncated procedures (those for which a max­

imum number of observations i s allowed). Under certain con­

di t ions , the Bayes sequential procedure is. a truncated proce­

dure, and nothing i s lost by t h i s restr ic t ion. But, i n gene­

ral , the class of a l l truncated procedures i s s t i l l too large. 

More restr icted c lasses of procedures have been proposed, e.g. 

m-step look ahead, inner look ahead, and f ixed sample s i ze 

look ahead. Although Bayes procedures can often be found 

within these c lasses , they typical ly require considerable 

computation at each stage of sampling and, so , are not well-

suited to audit s i tuat ions . 

The SPRT, with i t s constant bounds, i s appropriate to 

audit s i tuations, and i t i s possible to "rationalize" the 

c lass ica l SPRT to obtain the Bayes SPRT-—the minimum r i sk 

SPRT. However, there are two drawbacks to implementing the 

Bayes SPRT for audit uses: ( i ) derivation of the bounds is 

rather complicated, and ( i i ) a reasonable truncation rule i s 

not obvious (for example, there i s no longer a necessary con­

nection between the optimal f ixed sample s i z e procedure and 

the Bayes SPRT, and the expected sample s i z e of the Bayes SPRT 

may well exceed the optimal fixed sample s i z e ) . As in the 
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classical case, we seek a sequential procedure that is tied 

to the optimal fixed sample size procedure. A Bayesian SPRT 

truncated at the optimal fixed sample size should be well-

suited to audit needs, and I will propose such an SPRT below. 

For various reasons (budgeting, coat to access the samp­

ling frame, etc.), we decide on a fixed sample size procedure 

and select the optimal fixed sample size, n*, from the samp­

ling frame. We are, then, in effect, committed to the Bayes 

risk, r*, of xhis procedure. But the observations will be 

made sequentially. If at any time n<n* the Bayes risk of an 

immediate decision does not exceed r*, we should stop and 

make a decision. Otherwise, we continue sampling, eventually 

stopping at n* if no decision has been made earlier. 

We have already found the Bayes risk r(g)=r* and the 

sample size n* of the optimal fixed sample size procedure. 

By the equivalence in (44), r* may also be called the expected 

posterior Bayes risk at time n*. We now need the Bayes risk 

of an immediate decision at time n=l,2,... (Assuming that 

n*>0, the Bayes risk of a decision at n=0 will exceed r*.) 

This risk is the posterior Bayes risk at time n. Let gn= 

ga(p;x), the posterior at time n. Then the posterior risk 

of taking action a at time n is 

r0(g
a,a)=Eg;xL(p,a,n) (54) 

and the posterior Bayes risk of an immediate decision at time 

n is the minimum posterior risk: 

rQ(g
n)= infEg;xL(p,a,n) (55) 

Our rule is, then, to stop at the first n such that 
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r 0 ( g n ) ^ r * (56) 

To implement th is rule , we need to specify TQ^g111) in terms 

of our loss function i n (36) and (37): 

r0(g t t ,a1)=K21gn(p2;x)+n 

rQ(g
a,a2)=K12g

a(p1;x)+n 

Just as we found in (47) and (48), a1 is the optimal action 

if the LR is less than c*%2£1^21£2* 3o' 

In the development, we will rewrite the posterior, using (39), 

as 

_ g.f^x^J 
ga(Pi;x)= * for 1-1,2 (59) 

g1f"(x;p1)+g2f"(x;p2) 

By (58) and the stopping rule in (56) , we take action a~ at time 

n < n * i f l a ( x , p l t p 2 ) < D and i f 

n g g f^(x;p2) 

g1fn( x; px) Tggf'H x; p2) 

That i s , i f 

^ix;p2) g. f r*-n 1 
— * 4 - * = A (61) 

f ^ x j p ^ g2 LK21-r*+nJ 

Now the lefthand side of (61) i s just the LR, and we w i l l 

show that A<D, hence we may discard the condition l a ( x , p , , p 2 ) 

< D . 

Note that r*<min(g1K12 ,g2X21) i f n # > 0 , otherwise the 

r isk of going on equals or exceeds the risk of an immediate 

decision, and no sampling would be done. We f i r s t assume 

^1^12^ g2221* *nen» b v * n e definit ion of g g , 



www.manaraa.com

54 

«1*12< ( l - * l ) K 2 1 (62) 

or 

g l < Z21/(K12+K21) (63) 

so 

«1K12 < 2 12 Z 21 / ( K 12 + K 21 ) ( 6 4 ) 

since K^.K,,^ 0. And, since 0 < r*-n< r*< g-jK ,̂,, 

r*-n< 2 1 2
Z21 / ( K12+ K21 ) ( 6 5 ) 

or 

( ^ - n H l + ^ / K ^ K K ^ (66) 

and 

r»-n<Z1 2-(K1 2 /K2 1)(r*-n) (67) 

which we may factor into 

r*-n<(K12/K21)(K21-r*+n) (68) 

Since r*<K21 , K21-r*+n>0 and 

(r*-n)/(K21-r*+n)<KL2/K21 (69) 

Multiplying both sides of (69) by g j / g 2 ^ ° gives the result . 

The same result obtains i f g-tKno^ &2^2± ( m e r e l y substitute 

g2 for g, and interchange K-2 and Kg, in the f i r s t few steps) . 

It i s also easy to see that giKi?=g2K21 l e a d s *° t l l e s a m e 

resul t . 

We now resume development of the tes t . We take action 

ag at n<n* i f l a ( x , p 1 , p 2 ) ^ D and i f 

_ g . f a (x ;p . ) 

'^^^^fcZT/ B*r* (70) 

That i s , i f 

5 ^ 3 r i c £ 2 i . 3 in) 
f ^ x j p ^ g2 L r*-n J 
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The lefthand side of (71) is again the LR, and it may be shown, 

in a manner analogous with that of the proof that A<D, that 

B>D, hence we can discard the condition ln(x,p,,p2) £ D. 

A and B are not the bounds of an SPRT since they widen 

slightly at each sampling stage, reflecting the decreased 

opportunity to save sampling cost in making an immediate de­

cision. However, if we treat the sampling cost as foregone, 

we replace n with n* and obtain the constant bounds A' and B': 

6l 
A'= -* 

*2 

*1 
B'= -" 

g2 

' r*-n* "I 

K21-r*+n»j 21 I (72) 

r*-n* J 

This y i e lds a mere conservative sequential procedure, since 

A'<A and B'>B for a l l n<n* . The stopping rule in (56), 

then, pertains to decision risk only, not overall r isk. We 

may also just i fy the use of A' and B' on more substantive 

grounds. Assume that there i s a s ignif icant cost attached 

to accessing the sampling frame and select ing the sample. 

To obtain a constant unit sampling cost, t h i s fixed cost must 

be allocated on the basis of a known sample s i ze , presumably 

n*. In th i s case, use of the variable bounds A and B would 

understate the risk faced. 

We have arrived at the following sequential procedure: 

a^ i f l a ( x , P l , p 2 ) $ A ' 

d a (x)=' a2 i f l n ( x , P l , p 2 ) £ B ' (73) 

k a, otherwise 

Just as in the c lass ica l case, we can restate this t e s t using 
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the sufficient s t a t i s t i c T
n ( x ) = s

n aad replacing the bounds 

A' and B' with acceptance/rejection numbers determined by 

the relation in (15) . Again, we truncate the test at n=n* 

and follow the optimal fixed sample s i z e rule in (53) at th i s 

time. This leads to the following decision rule: 

:) i f n < n * fda(x 
4 W - ( a - ( : 

(74) 
x) otherwise 

where 

*1 i f T n ( x > 4 a n 
d n ( x ) ~ f a 2 i f T n ( x ) ? r n (75) 

a- otherwise 

and 

n# (a, ifTn#(x)<C 
da*(x) = j ^ a* (76) 

\ a- otherwise 

where n* i s the sample s ize and C is the cr i t i ca l value of 

the Bayesian optimal fixed sample s ize procedure. 

Note that (74) i s a truncated SPRT. Hence we may com­

pute the OC function using (21) and approximate the ASN func­

tion using (32) or (34). 

We have found the posterior Bayes risk (the Bayes r isk 

given x) of d. To obtain the Bayes r isk , we must average 

the posterior Bayes risk over a l l possible x, i . e . take the 

expectation with respect to mn(x), the unconditional d i s t r i ­

bution of x . It i s easier to reverse the order of expecta­

t ions , finding the expected l o s s with respect to f a (x ;p ) , 

the conditional (on p) distribution of x, and then averaging 

over p, i . e . taking the expectation with respect to the prior 
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g(p). By (44), these two methods are equivalent. 

The risk of d depends on the expected sample size as 

well as the decision loss: 

R(p,d)=BpL(p,d(X),N) 

-Bp(L(p,d(X))+N) (77) 

=EpL(p,d(X))+Ep(N) 

given the form of loss function specified in (36). Hence, 

R(p.,d)»K1!>(l-ot(p1))+ET, (N) 

R(p2,d)»K21oC(p2)+Bp (N) 

where we have simplified notation by using the OC function. 

The Bayes risk of d is, then, 

r(g,d)=BgR(p,d) 

=g1R(p1Pd)+g2R(p2,d) (79) 

*sl(K12(l"0<(pl))+Ep W)+e2(K21oc(p2)+Ep (N)) 

Example 3.5 (continued from Example 3.1). From the dis­

cussion just following Example 3.4, we have r*=172, n*=88, 

and C=3. The prior and loss are unchanged and are not restated 

here. Substituting in (72) gives 

A,=(.8/.2)(l72-88)/(l500-172+88)=0.237 

B'=(.8/.2)(60O-l72+88)/(l72-88)=24.571 

Using the relation given by (15) and keeping In mind that 

C=3, the acceptance/rejection numbers are 

n r 
— — — • n 

24n£-87 2 
88 3 

n 
35 
75 
88 

a.. 
0 
1 
2 
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The OC function is found, as before, using Aroian's (1968) 

method (21): 

<*(.01)=0.954 

04.05)=0.266 

And, uoing the ASN approximation in (34), 

E<01(N)=47.28 

E#05(N)=47.20 

and, in this case, is exact. The Bayes risk of d is 

r(g,d)=.8[(l-. 954)600+47.28]+. 2 [(.266) 1500+47.20] 

=.8(74.88)+.2(446.20) 

=149.14 

It should be noted that the Bayes risk of the truncated 

SPRT is less than that of the optimal fixed sample size pro­

cedure (r*=172). This was, of course, the intention in 

deriving the bounds A' and B' for the sequential procedure. 

But the decrease in Bayes risk did not result from symmetric 

decreases in risk. We compare the fixed sample size and se­

quential procedures in the table below: 

fixed sample size sequential 

R(.01,.) 123.76 74.88 

R(.05,») 365.71 446.20 

E#01(N) 88 47 

E>05(K) 88 47 

Here we have a result quite similar to the classical case in 

Example 3.4: one risk increased while the other decreased 
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and ASN decreased in both cases. But here , as opposed t o 

the c l a s s i c a l s i t u a t i o n , we have a c r i t e r ion by which t o 

judge th i s tradeoff: i f we accept Bayes r i s k as the appro­

p r i a t e choice c r i t e r i o n for t e s t s , the truncated SPRT i s 

superior to the fixed sample size t e s t . However, no claim 

i s made t ha t the truncated SPRT i s optimal among the c lass 

of a l l procedures truncated at a* using the optimal fixed 

sample size rule at tha t t ime. Conceptually, we would p r e ­

fer t o find a Bayes ru le in th i s extended c lass of procedures. 

While the de f in i t ion of a "best" procedure i n t h i s c lass is 

not problematic from a Bayesian perspect ive, the other objec­

t ion ra ised at t he end of sect ion 3.2 s t i l l holds : finding 

t h i s procedure i s contingent on the existence and discovery 

of an eff ic ient search algorithm. 

3.5 Summary 

The models presented i n sections 3 . 1 through 3.4 a r e 

acceptance sampling models i n which the sampling un i t can 

be c l a s s i f i ed as an er ror or nonerror. They are isomorphic 

t o qual i ty control t e s t ing models in which the sampling unit 

can be c lass i f ied as defect ive or effect ive. By analogy 

with the qual i ty control s i t u a t i o n , I r e fe r t o the models 

of t h i s chapter a s physical unit acceptance sampling (PUAS) 

models. (The motivation for th is term wi l l , i t i s hoped, 

become apparent i n the following chapter . ) Class ica l fixed 

sample size PUAS wi l l refer to the tes t in (10) , c l a s s i c a l 

sequential PUAS w i l l re fe r t o the test in (17) , Bayesian 
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fixed sample size PUAS wil l refer to the t e s t in (53). and, 

l a s t l y , Bayesian sequential PUAS will mean the tes t in (74). 
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.CHAPTER 4 

A STATISTICAL SUBSTANTIVE TESTING MODEL: 

MONETARY UNIT ACCEPTANCE SAMPLING 

The models presented in Chapter 3 were restricted to 

situations in which the auditor could classify the obser­

vations as errors or nonerrors. We have called these models, 

collectively, physical unit acceptance sampling (PUAS). But 

there are many audit situations for which a finer classifi­

cation of the observations is needed. Notably, this occurs 

in direct tests of balances and transactions (i.e. substan­

tive tests) where the natural measure of error is monetary, 

and the degree of error of each observation becomes critical. 

In the subsequent development, we will extend, the PUAS models 

for use in substantive tests. I will refer to the proposed 

models, collectively, as monetary unit acceptance sampling 

(MUAS). The propriety of this name will become evident in 

the development. Except as noted in the sequel, we restrict 

the situation to a test for overstatement in an asset balance 
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(80) 

( e .g . inventory). Overstatement means that the book (or re ­

corded) value exceeds the true value. The general hypotheses 

are, then, 

H,: the balance i s correct 

H2: the balance i s overstated 

The auditor, however, i s wil l ing to tolerate some degree of 

overstatement before deciding against R,. In substantive 

test ing, a tolerable degree of overstatement is termed 

jjmnaterijal.. An intolerable degree i s , then, material. Ma­

t e r i a l i t y as used here refers t o the working assumption that 

some degree of overstatement i n an asset balance has no effect 

on the decisions of a reasonably prudent user of the financial 

statements containing that balance. But some greater degree 

of overstatement wil l affect the decisions of such a user. 

Materiality may be expressed in absolute terms, but i t 

i s naturally expressed as a percentage of the book value of 

the balance in question. Thus, for example, the auditor may 

expect an immaterial rate of overstatement of p=.01. And 

he may decide that the lowest material rate of overstatement 

i s p=.05. In such a case, the general hypotheses in (80) 

may be operationalized as 

E,: p=.01 
^ (81) 

H2: p=.05 

(I wi l l consistently refer to materiality in percentage terms. 

And, to simplify usage, I wi l l refer to the rate of overstate­

ment as the error rate. This usage wi l l be just i f ied on i t s 

own merits when monetary unit sampling i s introduced below.) 
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Given the hypotheses in (81) , the PUAS models appear 

to be applicable. However, the natural sampling units of 

a balance are typical ly subunits of varying book value ( e . g . 

the items or part numbers in an inventory balance). A c l a s ­

s i f i ca t ion of these subunits into "materially correct" and 

"materially overstated" i s not sufficient for the decision 

required in (81). While i t i s true that, i f no subunit i s 

materially overstated, the balance i s not materially over­

stated, and, i f every subunit i s materially overstated, the 

balance i s materially overstated, the necessary relationship 

extends no further. The overstatement of just one subunit 

may be suff ic ient for material overstatement of the balance, 

provided this subunit i s large enough ( in book value) re la­

t ive to the balance as a whole. 

The traditional auditing approach to the problem in (81) 

has been the use of various survey sampling techniques to 

estimate the true value or, equivalently, the true error 

rate . This estimate i s then compared to the book value by 

means of a confidence interval. These techniques, grounded 

in f in i t e population sampling theory, are essent ia l ly non-

parametric, relying on the large-sample behavior of the e s t i ­

mator to construct the confidence interval. (See Roberts 

(1978) for applications of this approach.) However, studies 

by Kaplan (1973b) and Neter and Loebbecke (1975,1977) pro­

vided evidence actual confidence leve ls could be s ignif icantly 

lower than nominal confidence l e v e l s for typical audit sample 

s iaes in t e s t s on typical accounting populations. 
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Another approach is a natural extension of the binomial 

model for compliance tests. Following on the notion that a 

finer classification of the observations is needed in sub­

stantive testing, Neter et al. (1978) proposed a multinomial 

model. While conceptually appealing, this model exhibits 

various difficulties attendant on moving from a univariate 

to a multivariate model. Among these are choice of test, 

power of the test (once chosen), and determination of neces­

sary sample size. 

An alternative, univariate, approach is based on mone­

tary unit sampling (MUS). (Por simplicity, we will refer 

to the monetary units in question as "dollars.") Rather than 

employ the natural sampling frame of subunits, MUS treats 

the balance as consisting of dollars. These dollars are la­

beled 1,2,...,N, where N is the total book value of the ba­

lance. This is an artificial sampling frame created by the 

auditor. It is usually created by ordering the subunits of 

the balance and identifying dollars 1,...,N, with the first 

subunit (where N. is the book value of the first subunit), 

identifying dollars N,+l,...,N,+N2 with the second subunit 

(where N2 is the book value of the second subunit), and so 

forth. Other mappings are possible. The observations are 

now dollars, which are classified as errors ("defective" dol­

lars) or nonerrors ("nondefective" dollars). The error rate 

is now simply the proportion of "defective" dollars in the 

balance. In such terms, the PUAS models appear applicable 

(i.e. each dollar becomes a physical unit). 
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The d i f f i cu l t y in applying the PUAS models l i e s in the 

determination of a defective do l la r . Since c l i e n t s account 

for subunits , not individual do l l a r s , t h i s wil l necessar i ly 

involve an audit of the subunit containing the d o l l a r . (Thus, 

viewed as a method of se lec t ing subuni ts . MUS i s one form 

of probabi l i ty proportional t o size (pps) sample se lec t ion , 

where the measure of size i s book value . ) In j u s t two cases 

can we be ce r t a in whether or not the d o l l a r selected i s de ­

fec t ive : ( i ) the subunit containing the dol lar i s en t i re ly 

f i c t i t i o u s , and ( i i ) the subunit containing the do l l a r i s 

en t i r e ly sound. But the Intermediate cases , in which the 

subunit containing the do l la r i s p a r t i a l l y overstated, lead 

t o an i den t i f i c a t i on problem. For example, consider a d o l l a r 

belonging t o a subunit that i s 10# overstated. The dol lar 

selected apparently could be e i t he r one of the 10% that are 

defective or one of the 90^ t h a t are sound. Alternat ively, 

our ra t iona le in suggesting t h a t PUAS might be applicable 

was grounded in the idea of defective do l l a r s (e r rors ) and 

nondefective do l l a r s (nonerrors) . Is i t meaningful within 

the context of PUAS to speak of a 10# defective dol la r? 

In sect ion 4 . 1 , we wil l r e s t a t e , i n somewhat al tered 

form, the f i r s t so lu t ion proposed for t h i s ident i f ica t ion 

problem. In sect ion 4 .2 , I offer an improvement on th i s 

solut ion and then, i n section 4 . 3 , present the r e s u l t s of a 

Monte Carlo study using the proposed MUAS models. 
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4.1 Conditional Randomization 

The first solution to the identification problem in the 

case of partially overstated subunits was given by van Heerden 

(1961). To discuss his solution and the alternative, equiva­

lent, solution that we call conditional randomization, we 

need additional notation. Recall that we now mean by "error" 

a defective or overstated or fictitious dollar and note that 

N has been redefined for use in this chapter. We will use 

the following notation: 

for the population: 

N = population size (in recorded dollars) 

p = population error rate 

K = total errors in the population 

I = number of subunits in the population, I^N 

for the ith subunit (1=1,...,I): 

N.= size of the ith subunit (in recorded dollars) 

p.= error rate of the ith subunit 

E.= total errors in the ith subunit 

for the sample: 

n = sample size (number of dollars selected) 

k = total errors in the sample 

From these definitions, we have the following relations: 

for the population: 

N * z L i Ni 
K - £i=i Ki 
K = Np (82) 

for the ith subunit: 

Zi= V i 
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I wi l l assume throughout that a random sample of size 

n i s selected with replacement from a population of s ize N. 

Also, for any subunit i , p, i s known with certainty i f , and 

only i f , at least one dollar from the i th subunit i s included 

in the sample. 

We are now in a position to describe van Heerden's (1961) 

solut ion. Assume that we se l ec t the Jth dollar of the pop­

ulat ion ( l £ J ^ N ) and that t h i s dollar i s contained in the 

i th subunit ( l £ i 4 l ) . The i t h subunit contains K, errors. 

If K1=0 or N ,̂ there i s no ident i f icat ion problem, hence I 

assume that 0 < K . < N i < Van Heerden proposed that we Identify 

these errors with the high-order dollars in the subunit. 

That i s , l e t the i t h subunit consist of dollars M-N.+l,M-N.+2, 

. . . ,M (Nj- l^M^N). We identify M,M-1,... .M-Kj+l as errors. 

If M-K.+l^ J^M, we record an error for t h i s observation 

and a nonerror otherwise. 

Rather than work out the s t a t i s t i c a l Implications of 

van Heerden's identi f icat ion rule , we w i l l consider an a l ter­

native solution based on conditional randomization. While 

these two solutions are probabil ist ical ly equivalent, the 

conditional randomization construction direct ly motivates 

the improvement offered in sect ion 4 .2 . 

The solution we consider consists of a conditional ran­

domization device (crd) that records an error with conditional 

probability Pj-Kj/1!^ given that a dollar from the i t h subunit 

has been selected, th i s se lect ion having been made at random 

with replacement from the population of N dollars. The crd 
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i s invoked after the dol lar i s selected and represents a 

second layer of randomization. Here i s an example of the 

use of a crd. The jth dol lar ( l £ j £ n ) in our sample belongs 

to the ith subunit. We observe an error rate of Pj = .5 in 

th i s subunit. An appropriate crd i s the toss of a fair 

coin, recording an error for heads and a nonerror for t a i l s . 

We now examine the consequences of using conditional random­

izat ion. 

Let Y. represent the possible outcome of the crd for 

the jth sample dollar. More precisely , l e t 

C i f the crd records an error for the j t h dollar 
V f (83) 

•» I n otherwise 
for j = l , . . . , n . We are interested in the distribution of the 

{Y.J. Note that , since we are sampling at random with re­

placement, the [YA are independent, identically distributed 

random variables. Let 7 be a random variable with the same 

distribution as Y., j = l , . . . , n . And l e t A. be the event that 

a dollar from the ith subunit i s chosen and B be the event 

that the crd records an error. Then we have 

p{**iM[uLi<AinB)} 
- Ii=ipkflB^ 
-zLi^K^W (a 
-Ii=i(VMi)(VN) 

- Ii=iVN 

=K/N=p 

The second step in (84) follows since the ^A^^BJ are 

pairwise disjoint events. That P ^ A ^ ^ / ^ follows from 
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the definition of the crd. And J^A^sfl^/N follows from the 

fact that we are sampling at random with replacement from a 

population of N dollars. It follows from (84) that 

P{Y=0]=l-p (85) 

and, since Y is an indicator variable, we have immediately 

E(Y)=P(Y=l]=p (86) 

with variance 

Var(Y)=E(Y2)-(E(Y))2 

/ i ( 8 7 ) 

=p(l-p) 

The {jA are independent, identically distributed binomial(l,p) 

random variables. Hence, 

Sn= E j ^ j /^binomial(n, p) (88) 

Thus, use of a crd conforming to our definition of such 

a device extends the PUAS models for use in substantive tests 

as characterized in (80). (To see that van Heerden's rule 

yields the same result, simply define B in (84) as the event 

that the dollar selected is defective.) It is of some impor­

tance to note that, by invoking the crd at each sampling stage 

n=l,2,..., the PUAS sequential plans may be implemented. 

Before proceeding to discuss an Improvement on this so­

lution, we should pause to note that van Heerden's rule, or 

use of a crd, made available, for the first time, a parametric 

test of (80), with known risks under the control of the audi­

tor and independent of any large-sample theory. It is a sig­

nificant achievement in the history of audit sampling, for 

which van Heerden has not received due credit. 
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4.2 An Alternative t o Conditional Randomization 

There are both behavioral and s t a t i s t i c a l objections 

to the use of a crd. Behaviorally, there appears to be a 

general abhorrence of randomized rules for nontrivial deci­

sions. While such a behavioral objection i s of practical 

importance, there i s a more substantive objection to the use 

of conditional randomization in the case at hand. If a crd 

i s used, certain Information i s discarded. Prior to selecting 

a dollar from the i t h subunit, the error rate pA of that 

subunit i s unknown. But, once we have selected a dollar that 

belongs to the i th subunit, p, i s known with certainty. The 

crd discards th is information in favor of a 1 (with probabil­

i ty pj) or a 0 (with probability l - p i ) . Consider the degen­

erate case of a population with only one subunit ( I= l ) . Here, 

PT=P, and, after select ing one dol lar , we know p with certainty. 

Using a crd, we wi l l select n dol lars , randomize for each, 

and record k errors. Unless p=0 or 1, use of the crd has 

introduced decision risk where there need be none ( i . e . k/n 

i s Identically equal to p only i f p=0 or 1 ) . This argument 

suggests that we can improve on the crd by basing our decision 

on a l l the Information available, i . e . a l l known {PjJ* 

In the following construction, i t wi l l be necessary to 

modify the noxation of section 4.1 s l ight ly . We group to ­

gether a l l subunits in the population with identical subunit 

error rates . We assume that there are H^I dis t inct {PjJ. 

We label these qn, h = l , . . . , H . And we define I a as the set 

of subscripts in { l , . . . , I j for which P^=qft« Then l e t 
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a i 4 L i 

h (89) 

Note that Zlh*_T.MhsN antt ^-hsl^h*2 since the [lA form a par­

tition of {l,...,l}. 

Let X., j=l,...,n, be the jth random subunit error rate. 

The {%A are independent, identically distributed random 

variables. Let X be a random variable with the same distri­

bution as X., j=l,...,n. Then 

P^X-qJ^/N (90) 

and the expected value of X is 

«*>-!Ll<nlV»> 
-flLl<VV(V*> (91) 

=Ih=iVN 

=K/N=p 

with variance 
Var(X)=E(X2)-(E(X))2 

=E(X2)-p2 (92) 

-Ih=i*h<VN>-p2 

Since 0 $ q a ^ l implies that <l£$<laf (92) implies that 

Var(X)£p(l-p) (93) 

Let 

S' = 7 a .X. (94) 
n ^>j=l j 

Then we have 

« U - (95) 
Var(Sn)=n(Var(X)) ^ np(l-p) 
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Thus, S' has the same expectation as S (defined in (88)) 

but has lower variance except in the extreme case of only 

two distinct {pA, 0 and 1. To see that S* achieves i t s 

maximum variance under these conditions, note that H=2 

and l e t , say, q^=0 and q2=l. Substituting in (92) we have 

Var(X)=I2
=1q2(MQ/N)-p2 

=(M2/N)-p2 

=(K2/N)-p2 (96) 

=p-p 

=p(l-p) i f p^=0 or 1 for 1 = 1 , . . . , I 

.Under these conditions, S'/Nybinomial(n,p), i . e . S'=S . 

Furthermore, S' achieves i t s minimum variance i f a l l {vA 

are equal, that i s , 

Var(X)=0 i f p i =p for 1 = 1 , . . . , I (97) 

4.2.1 Fixed Sample Size MUAS 

These results suggest that we obtain a conservative 

fixed sample size test as follows. We derive necessary 

sample size n and critical value C based on the conditional 

randomization model, that is, we plan the test based on S . 

In conducting the test, however, we substitute T'(X)=S' 

for Tn(
x)=s

n« This is not quite as straightforward as 

it may appear. Since 3' is a continuous random variable 

(except in the degenerate cases of (96) and (97)) and C is 
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integer-valued, the decision rule 

fa, if a • < C 
d"(x)={^ a (98) 

[ a2 otherwise 

(where sn=T»(x)) is equivalent to the rule 

fa, if rsTl1<C 
d"(x)-)^ L a J (99) 

^ a2 otherwise 

where Cw3 is the largest integer ̂ , w. Since CSn3^Sn» 

E([SQ3) ̂ -E(3')=np, and we introduce systematic bias in our 

statistic. The appropriate continuity correction is .5, with 

the rule 
fa- i f s ' < 0 - . 5 

d ' ( x ) - ) ^ - a ^ (100) 
^a2 otherwise 

or, equivalently, 

ISL, i f Cai+.53<C 
d ' U ) - ^ n (101) 

( a2 otherwise 

The continuity correction i s usually associated with the nor­

mal approximation to the binomial distribution (see Bickel 

and Dokaum (1977) p. 464). Here, we are discretizing S' and 

attempting to preserve (approximately) i t s unbiasedness. 

(If the density of S' i s constant on each interval (k,k+l) , 

k = 0 , . . . , n - l , then E(£3^+.5l)=E(Sn)=np. In th is case, E(CSQ1) 

=np-.5.) 

It may appear simpler to work with S' direct ly rather 

than substitute i t in a tes t based on S . The d i f f i cu l ty 

i s that the exact distribution of S' i s not known. As the 
n 

sum of independent, identically distributed random variables, 

thr> central limit theorem gives an approximate distribution. The 
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quality of the approximation wi l l depend on the population 

tested. However, we can use the normal approxiamtion to 

compare the nominal decision risks (of d(x) using S ) and 

the true decision r i sks (of d'(x) using S'). 

In the following, Ĉ  denotes the normal(0,l) distr ibu­

t ion function, and z ( b ) , 0 < b < l , denotes the value such that 

§[(z(b))»b. We f i r s t consider type I risk: 

. , f S -np, C-np,-.5 

p l a p l 
(102) 

__/C-np,- .5\ — 
«•-$[ =±=zj - 1 - $U(l-oO )= tf. 

P l n 

(See, for example, Bickel and Doksum (1977) p. 170 for use 

of the continuity correction in t h i s s i tuat ion.) 

V. Pi " p^ n ' Pj_ n 
(103) 

_./c-np,-.5 \ — 
i l ^ / 1 )=l -$(z( l - <x'))=<X.' 

^ V ^ P ^ A V 
Since Var (S')^Var (S ) , and assuming o<<.5 , 0 < z ( l - o O P^ « ^ P^ n 
^ z ( l - <*/), hence o<'^. c<. Similarly, 

V r3.<cia( °^j l f j *$(s(/3))-f3 (104) 

^ ^ ^ • ^ ( 1 = ^ , ) -i<»« /»'»-4' do5) 
Then, s ince Var (S')<Var (S„), and assuming / 2 < . 5 , z ( /3 ' ) 

1?2 "2 
^ z(/3)< 0, hence /3'^/S . 
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If the normal approximations hold, these results esta­

blish the risk reduction claimed for d'(x). We will call 

the test based on S' in (101) fixed sample size monetary unit 

acceptance sampling (MUAS). In the following section, we 

will extend MUAS to sequential sampling. 

4.2.2 Sequential MUAS 

The extension of fixed sample size MUAS to sequential 

testing is quite straightforward. At each sampling stage n, 

we have, in the sequential PUAS models, integer-valued accep­

tance and rejection numbers (a and r , respectively) such 

that we reject H- if sn^r and accept H, if s_!$a and con­

tinue sampling otherwise (up to n*). In replacing S with 

S', we make the following continuity corrections: reject 

H, if s'^.r -.5 and accept H, if s'^a +.5 and continue samp­

ling otherwise. Now, sa£ra-.5 if and only if [sn+.5]£.ra. 

And 3 a<
a
n
+'5 if and only if £sa+.53^aa. (We are entitled 

to ignore the possibility that s'=a +.5>) Hence, at each 

stage n, we substitute £3'+.53 f o r 3 n
 a s tiie 'te8't statistic. 

We have, then, the following decision rule for sequential 

MUAS: 

(d a ( t v J
 l(x) i f n<n* 

d(x)=f n # (106) 
(x) otherwise 

where 

d a (x )=Ja 2 i f [ s a + . 5 ] ^ r n (107) 

\ a, otherwise 
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and 

# ( ^ i f |>n+.5]i<C 
da (x)*.) -1 n (108) J a2 otherwise 

where n* i s the sample s i ze and C i s the c r i t i c a l value of 

the optimal fixed sample size PUAS procedure. 

We have obtained apparently conservative substantive 

procedures, sequential and fixed sample s i z e , as follows: 

we derive necessary sample size and cr i t i ca l value based on 

3 sN^binomial(n,p); in performing the tes t , we substitute S' 

for S by discretizing 3 ' according to the rule ([S'+.53. 

When 3a=Sa ident ical ly , as in compliance tes t ing , C3
n

+»5]=Sa 

identical ly , and, so, the test mechanics of MUAS can also 

be used for PUAS. The degree of conservatism depends, at 

l eas t in part, upon the degree to which Var(S )=np(l-p) over­

s tates Var(S'). A Monte Carlo study was performed both to 

provide empirical support for the claim of conservatism and 

to assess the degree of conservatism under plausible audit 

circumstances. The study i s described in d e t a i l , and the 

resul ts reported, in section 4.3* These results indicate 

that MUAS i s quite conservative under conditions that may 

well be considered typical , given our limited knowledge of 

audit populations in general. The principal drawback of 

conservative t e s t s i s ineff iciency, i . e . excessive sample 

s i z e . The use of sequential MUAS should serve to reduce 

t h i s inefficiency to acceptable l e v e l s in many audit tes t ing 

s i tuations. 
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4.3 Monte Carlo Study of MUAS 

The Monte Carlo results presented below provide some 

empirical support for the claim of conservatism for the 

monetary unit acceptance sampling (MUAS) plans, as well as 

some measure of the degree of conservatism under plausible 

audit substantive testing conditions. In the case of Bayes­

ian MUAS, the study also provides some evidence for the ade­

quacy of model construction. It should be emphasized that 

a systematic robustness, or sensitivity, analysis is not 

contemplated. Rather, the performance of MUAS under a plau­

sible, but constrained, set of circumstances is examined. 

4.3.1 Description of the Study 

The study population used is an adaptation of Neter and 

Loebbecke's (1975) population 4. The principal characteris­

tics of the study population are presented in Table 4.1. 

There appears to be only one characteristic typical of ac­

counting populations: relative frequency is a decreasing 

function of subunit size (in monetary value). Although the 

study population is an abstraction of an actual accounts 

receivable population, it could easily represent inventory, 

fixed assets, or accounts payable. Actual accounting popu­

lations exhibit a wide variety of subunit si«es. Since MUAS 

places no constraint on subunit size, only nine sizes are 

used, thereby reducing the cost and time needed to generate 

teat populations from the study population. 



www.manaraa.com

78 

Test populations are created by randomly seeding re la ­

tive errors in subunits of the study population in accordance 

with one of ten re la t ive error distributions. We wil l need 

to dist inguish the mean and variance of the re lat ive error 

distribution from the mean and variance of the t e s t popula­

t ion. The terms "relative error mean" and "relative error 

variance" w i l l be reserved for the former quanti t ies , and 

"error mean" and "error variance" w i l l be used for the l a t t e r . 

The re la t ive error distribution consists of posit ive re la t ive 

errors only, while the error distribution ( tes t population) 

i s a mixture of pos i t ive re lat ive errors (which follow the 

relat ive error distribution) and zero relat ive errors (a 

constant). For each re lat ive error distribution, two t e s t 

populations, with error means cf .01 and .05 . are generated. 

The following relat ive error distributions are used: 

(1) reverse J—low and high variance (denoted by "low J" 

and "high J" respectively) 

(2) reverse J with 100# re lat ive errors—low and high 

variance ("low J-100H and "high J-100" respectively) 

(3) unimodal—low and high variance 

(4) uniform 

(5) degenerate at . 3 , .5» and .8 ( i . e . three distribu­

t ions exhibiting constant re lat ive errors) 

In addition to these 10 distr ibut ions , a control distribution 

(in which a l l relat ive errors are 0 or 1, i . e . the relat ive 

error distribution i s degenerate at 1) i s used to provide 

empirical results on nominal r i sks , since, in t h i s case, the 
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error distribution (under MAS) i s truly binomial. In a l l 

cases, the desired error mean ( .01 or .05) is attained by 

varying the proportion of subunits overstated. 

There i s l imited empirical evidence on relative error 

distributions in accounting populations. Johnson et al . (1981) 

report a variety of distributions. Distributions ( l ) - ( 4 ) 

have been used in several Monte Carlo studies ( e . g . 

Roberts e t a l . (1982) and Leitch et a l . (1982)) . The 

degenerate distributions have not been used in other audit 

studies and are discussed below. 

Theoretical distributions are used to model the nonde-

generate relat ive error distributions. The intent here i s 

to produce an approximate shape and predictable properties 

rather than accurately simulate any given theoretical d i s t r i ­

bution. The tes t population generator developed for this 

study induces re lat ive errors i n accordance with the frequen­

c ie s of a cumulative distribution function (cdf) . The cdf 

may be specified more accurately by increasing the number 

of po ints , xQ, x , , . . . , at which the cumulative frequency i s 

given. Between any two such points, x^ and * i + 1 » the re la­

t ive errors are uniformly induced. The t e s t population gene­

rator i s l i s t e d In Appendix E, and input data for each t e s t 

population i s given in Appendix F. 

The J distributions are modelled on gamma distributions. 

(See Appendix A for a l l of the theoretical distributions men­

tioned in this section.) The low J i s approximately an 

exponential(10) , i . e . a gamma(l,10). The high J i s based on 
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a gamma(.25,2.5). These theoretical distributions have a 

mean of .1 and variances of .01 and .04, respectively. Due 

to truncation at 1.0, the high J distributions have variances 

of about .03. The J-100 distributions are modelled in the 

same way but with the addition of independently induced 100$ 

relative errors. For these distributions, about 20# of the 

total error is attributable to 100# relative errors. The 

choice of 20# is somewhat arbitrary. Johnson et al. (1981) 

do not report this statistic directly. However, they do re­

port the proportion of relative errors that are 100# errors. 

Since they found no significant correlation between error 

amount and relative error, the proportion of 100# relative 

errors should be a reasonable surrogate for the proportion 

of total error due to 1009& relative errors. (Parenthetically, 

the lack of significant correlation found in the Johnson 

study supports the random approach to relative error induction 

used in this study and others.) Of the high error populations, 

Johnson et al. report that 7 of 10 of the accounts receivable, 

and 10 of 10 of the inventory, populations exhibit 20# or less 

100# relative errors. Thus, 20$ appears to be a reasonable 

choice. The low unimodal is based on a normal( .5,.01), and 

the high unimodal is based on a normal(.5» .03). The uniform 

distribution is approximately a uniform(0,l). 

These distributions form three mean-variance groups: 

J, J-100, and unimodal-uniform. Within each group, the rela­

tive error mean is approximately constant and the relative 

error variance increases. Between groups, the relative error 
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mean increases. Histograms with summary statistics (relative 

error mean and variance) for these relative error distribu­

tions are presented in Figures 4.1-4.7. Each figure consists 

of two parts: part A depicts the distribution when the error 

mean is .01, and part B depicts the distribution when the 

error mean is .05. (Although the same cdf is used in both 

cases, there are slight differences because the distributions 

were independently induced in the two cases.) More detailed 

data on the resulting test populations is given in Table 4.2. 

The degenerate distributions exhibit constant relative 

error of .3» • 5» or .8. These distributions are discrete 

and may be transformed to obtain exact fixed sample size tests. 

They are included here to assess their impact on sequential 

MUAS. 

All testa are of the following problem: 

H-: p=.01 

H2: p=.05 

H1 represents an immaterial (but positive) level of overstate­

ment. H2 represents the lowest level of overstatement consi­

dered material in the audit literature. Six classical tests 

are conducted. (The tests are labeled 1.1 through 1.6, where, 

if used, "F" refers to the fixed sample size test and "S" to 

its sequential counterpart.) These tests differ in level and 

power approximately as given in Table 4.3. Exact nominal 

level and power for each test are given in Table 4.4. (Nomi­

nal risks are computed assuming the maximum error variance. 

Table 4.3 gives the target level/power for the fixed sample 
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size tests. The exact level/power given in Table 4.4 repre­

sents the beat approximation to the target level/power with­

out randomizing over decision rules.) The choices of level/ 

power were influenced by Elliott and Rogers (1972). They 

recommend setting level from .05 to .10 and setting power 

at .95, .90, .85, .70, or .50, depending on the assessed 

quality of internal control. The low powers of .70 and .50 

are not included in the classical tests. However, one of 

the Bayesian tests (2.6F) effectively has power of about 

.50 and provides some evidence for low power tests. Sample 

sizes for the sequential tests are given in Table 4.5. The 

theoretical values are based on the approximation in (33). 

Observed values are based on 2500 replications on the control 

distributions. 

Six Bayesian tests (2.1-2.6) are conducted. These tests 

vary only in specification of the prior distribution as in­

dicated in Table 4.6. Given the loss specification (discussed 

below), these tests cover the available range, since a prior 

of .3 or less for H. results in a no-sample decision to reject 

H.. That is, the lowest prior, g,=.4, is effectively as ex­

treme as the highest, g-,=.9> The loss function is specified 

at ^2=600 (type I loss) and 2^=1500 (type II loss), where 

losses are measured in unit sampling costs. The particular 

loss specification used is not critical to this study (if it 

yields reasonable sample sizes). This is so because the per­

formance of the Bayesian procedures is assessed in terms of 

average observed loss. Also, given the sample size, it is the 

ratio of losses that affects the decision. Type I loss of 600 
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based on the following reasoning. Examination of the 600 

largest subunits of the study population will cover approxi­

mately 80# of total book value. I assume that, if an audi­

tor rejects H^ and fails to find a material error after exami­

ning 80# of book value, he will not pursue the matter further, 

concluding that H1 was, in fact, true. Type II loss of 1500 

was arrived at indirectly by answering the question of how 

much an auditor would be willing to do to forego a type II 

decision error. (Kinney (1975a) suggested this approach to 

type II loss specification.) Since a purposive examination 

of the largest 1500 subunits will cover about 955* of book 

value, an auditor would presumably be unwilling to do more 

than this, assuming a materiality level of 5#. On the other 

hand, he could not do less and still guarantee reduction of 

the error to an immaterial level, assuming no knowledge of 

the distribution of relative errors in the population. Im­

plicit in this specification is the notion, generally accepted 

in the audit profession, that a type II decision error is 

more serious than a type I decision error. 

Exact nominal risks for the Bayesian tests are given 

in Table 4.7. Theoretical and observed sample sizes for the 

sequential tests are given in Table 4.8. 

All tests, except those on the control distributions, 

are replicated 500 times. (Control distribution tests, per­

formed to obtain observed nominal values, are replicated 2500 

times.) In general, this degree of replication allowed suf­

ficient precision for the hypotheses of interest (discussed 



www.manaraa.com

84 

below). It should be noted that the teats were performed 

simultaneously on each of the 500 samples from the various 

test populations. This fac i l i ta t e s comparison among tests 

since differences observed from test to test are not caused 

by sampling variation. Furthermore, the fixed sample size 

tes ts are performed by carrying out the sequential t e s t s to 

n=n*. Thus, the fixed sample s ize results indicate precisely 

the risks that would have been incurred i f we opted for the 

fixed sample size tes t instead of the sequential in each s i tu ­

ation. This faci l i tates comparison between fixed sample s ize 

MUAS and i t s sequential counterpart. 

Results are presented graphically and in tabular format 

for the relative conservatism of the various t e s t s . Relative 

conservatism is defined as 

RC =(nominal risk-observed risk)/nominal risk 

and measures the degree by which nominal risk overstates 

(RC > 0) or understates (RC <0) actual risk when p i s the P P 
error mean. For example, RC QT=»2 indicates, in this study, 

that observed type I risk i s 20# less than nominal risk. In 

the Bayesian tes ts , the measure of risk used to RC i s R(p,d) 

as defined in (78). For the sequential t e s t s , expected sample 

size i s not necessarily known exactly. To overcome this dif­

f iculty , observed ASN i s used to calculate nominal risk. 

The efficiency of sequential MUAS i s also considered. 

Three measures of efficiency are presented. The f i r s t i s 

relative efficiency, which i s defined as 

RE =(n*-ASN)/n* 
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where n*=optimal fixed sample size and ASN=(observed) average 

sample size. RE measures the expected savings in observa-
Sr 

tions over the fixed sample size procedure when p is the error 

mean. Note that, given the truncation rule adopted in MUAS, 

RE ^ 0 . Since sample size is quite variable In the sequen-
if 

tial tests, two other measures of efficiency are presented. 

The second measure is max(RE ), where ASN is replaced in the 

RE ratio by the minimum observed sample size for a correct 

decision. Max(RE) is the upper bound on the relative effi­

ciency of sequential MUAS. The lower bound is zero. A more 

informative statistic is the proportion of truncated decisions 

(PTD), which measures how often RE is zero. Since ASN did 

not vary significantly over distributions, only results for 

the control distributions are presented. 

4.3.2 Hypotheses of Interest 

We are primarily interested in the relative conservatism 

of MUAS when carried out on plausible error distributions. 

I have contended that the actual risks of MUAS are bounded 

by the nominal risks based on the maximum error variance dis­

tribution. Thus, we expect to reject, for all nondegenerate 

relative error distributions, the following hypotheses: 

HI: RC > 0 1<0 

H2: R C 0 5 < 0 

where RC is the relative conservatism of the MUAS procedure 

when p is the error mean. 
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The degenerate relative error distributions are special 

cases. These distributions violate the assumption of MUAS 

that the test statistic, 3', is continuous. No particular 

hypotheses are entertained with respect to these distributions, 

and the results are discussed separately. 

It should be noted that efficiency as well as conserva­

tism should be considered in evaluating sequential MUAS: a 

gain in efficiency may offset a loss in conservatism. How­

ever, no formal hypotheses are entertained with respect to 

the efficiency of sequential MUAS. Descriptive statistics 

on relative efficiency are presented and discussed. 

4.3.3 Discussion of the Results 

The results of the Monte Carlo study are presented in 

several figures and tables. The first group—Figures 4.8-

4.13 and Table 4.9—pertains to the classical tests on the 

nondegenerate relative error distributions (J, J-100, unimodal, 

uniform). Within this group, each figure is a graphical pre­

sentation of the results (based on 500 replications) for the 

relative conservatism of one test. Each figure has two parts. 

Part A reports sequential MUAS results, and part B reports 

fixed sample size MUAS results. Each part is divided into 

upper and lower sections. The upper section reports results 

when p=.01 (H, true), and the lower section reports results 

when p=.05 (H2 true). Table 4.9 reports the numerical re­

sults that support these graphs. 
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The second group—Figures 4.14-4.19 and Table 4.10— 

presents r e s u l t s on the re la t ive conservatism of Bayesian 

MUAS for the nondegenerate r e l a t ive error d i s t r i bu t ions in 

the same format as that of c l a s s i ca l MUAS. 

The th i rd group—Tables 4.11 and 4.12—present r e s u l t s 

on the efficiency of sequential MUAS. 4.11 pertains t o 

c l a s s i c a l , and 4.12 to Bayesian, MUAS. 

The las t group—Tables 4.13 and 4.14—present r e su l t s 

on the re la t ive conservatism of MUAS for the degenerate re la ­

t i ve error d i s t r i bu t i ons . 

4 .3 .3 .1 Conservatism of Classical MUAS 

The r e s u l t s for EL and H2 are presented in Figures 4.8 

-4.13 and Table 4 .9 . I t should be noted t h a t , for the one­

sided hypotheses of i n t e r e s t , the "95#" lower confidence limit 

in the figures i s actual ly a 97.5# confidence l imit . I f th i s 

l imi t does not include 0 , the hypothesis may be rejected at 

l ea s t at the .025 level . More exact significance leve l s can 

be found from the data In Table 4.9* Based on the figures 

and Table 4.9, we conclude that 

( i ) HI may be rejected (p-value < .001) for a l l r e l a ­

t ive e r ro r d is t r ibut ions except the uniform; 

( i i ) for the uniform d i s t r ibu t ion , there i s strong 

evidence (p-value < .01) against HI for t e s t s with 

low nominal type I r isk ( t e s t s 1.1-1.3) and some 

evidence (p-value < .15) against HI for t e s t s with 

high nominal type I risk ( t e a t s 1.3-1.6); and 
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( i l l ) H2 may be rejected (p-value <.001) for a l l r e l a ­

tive e r ro r d i s t r ibu t ions . 

An important concern here i s the effect , if any, of re la t ive 

error d is t r ibut ion on RC . I t i s c l ea r from the figures that 

RC tends to decl ine from the low J t o the uniform d i s t r ibu-
P 

t ion . Since t h e re la t ive conservatism of MUAS i s predicated 

on an error variance less than the maximum, we predict an 

inverse re la t ionship between RC and error variance. The 

maximum error variances are .0099 and .0475 if p=.0l and 

p=.05, respect ively. The er ror variances of the t e s t popu­

la t ions are given in Table 4 .2 . The resu l t s tend to confirm 

the predict ion. There are anomalies—such as the high RC Q, 

associated with the low unimodal distr ibution—but the r e s u l t s 

are not inconsistent with an ordering baaed on er ror variance. 

The varying t e s t r e su l t s suggest two conjectures. F i r s t , 

for any given d i s t r i b u t i o n , RC is decreasing (not constant) 

in nominal r i s k . Thus, for high nominal r i sk , we may observe 

low re la t ive conservatism. For RC Q, , we may compare t e s t s 

1.1 and 1.4* 1.2 and 1.5* or 1.3 and 1.6. For RC Q,-, we may 

compare tes t s 1 . 1 , 1.2, and 1.3, or 1.4, 1.5, and 1.6. (The 

nominal risks a r e given i n Table 4 .4 . ) The second conjecture 

is t h a t RC is not symmetric in the hypotheses, tha t i s , for 
IT 

equal nominal risks, RC > RC_ . Nominal risks are not exactly 
p2 pl 

equal in any of the tests. But we may look at test 1.5F and 

1.43, where the nominal risks are quite close. For these 

two tests, we find only one case in which RC Q , > RC Q_. In 

most cases, RC Qt. appears to be significantly higher than RC 01. 
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4.3.3.2 Conservatism of Bayesian MUAS 

The results for HI and H2 are presented in Figures 4.14 

-4.19 and Table 4.10. The results are somewhat mixed. The 

following conclusions pertain to sequential MUAS. Slightly 

stronger conclusions may be drawn for fixed sample size MUAS, 

but the pattern is much the same. 

(i) HI can be rejected (p-value < .001) for all distri­

butions except the high unimodal and uniform; 

(li) HI can be rejected (p-value < .001) for the high 

unimodal distribution for all tests except 2.IS; 

(iii) HI cannot be rejected for the uniform distribution; 

(iv) H2 can be rejected (p-value <.001) for all distri­

butions for all tests except 2.63; and 

(v) there is at least weak evidence (p-value <.04) 

against H2 for test 2.6S for the low J and unimodal 

distributions, but H2 cannot be rejected for test 

2.63 for other distributions. 

As in the classical case, MUAS fared worst- in general, against 

the highest error variance, i.e. the uniform distribution. 

But with Bayesian MUAS we have two tests that did not exhibit 

conservatism on one or more distributions. Both of these 

tests have high nominal risks under one of the hypotheses. 

The OC functions of these two tests are given below: 

2.13 2.IF 2.63 2.6F 

OC(.Ol) .721 .754 .974 .954 

<*(.05) .049 .050 .670 .493 

The level of test 2.1 considerably exceeds that of any of 
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the c las s i ca l t e s t s In th i s study. Similarly, the power 

of 2.6 is far lower than any other t e s t . (Note that , for 

2.63, i t i s merely .330.) Thus, these results are consistent 

with the conjecture that RC declines in nominal r isk. It 

should be noted that, re lat ive to nominal risk of 2.IF, the 

the increase in nominal risk of 2.IS for the uniform dis tr i ­

bution is rather insignif icant. However, for 2 .6S, this is 

not the case, since the nominal type II risk of 2.6S i s con­

siderably i n excess of that of 2.6F. 

There i s some evidence, then, that sequential MUAS may 

be more sensi t ive to prior misspecification than fixed sample 

s ize MUAS. In defense of sequential MUAS, i t should be noted 

that both 2.2S (the minimax tes t ) and 2.33 are re la t ive ly 

more conservative than their fixed sample size counterparts 

for a l l distributions but the uniform, for which there i s 

no significant difference. And, since these two sequential 

procedures have lower nominal risks than the corresponding 

fixed sample size t e s t s , they are c learly superior. 

4 .3 .3 .3 Efficiency of Sequential MUAS 

Results on relat ive efficiency i n Tables 4.11-12 are based 

on the control d is tr ibut ions . Observed ASNs for the other r e l ­

at ive error distributions are within +11# of the control ASMa, 

and relat ive efficiency results are essent ial ly the same. 

In general, i t i s apparent that greater efficiency i s 

attainable under H2 than H,« Under H2 , the saving can be 

dramatic, since rejection can occur after only a few 
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observations. For the classical tests, RE is a decreasing 

function of nominal risk. For the Bayesian tests, RE in-

creases as the prior is more correctly specified. When the 

the prior is significantly incorrect (e.g. test 2.1 for p= 

.01 and test 2.6 when p=.05)> RE is no longer meaningful 
if 

since the sequential test terminates with the incorrect de­

cision too frequently. I have omitted the RE measure in 

these cases because the apparent savings are spurious. 

Sample size of sequential MUAS..varies rather broadly. 

Although not reported here, the standard deviation of the 

sample size is usually from 30£ to 50# of ASN. However, the 

average savings of sequential MUAS over fixed sample size 

MUAS, when p=p, or p=P2, appear to be significant (from 40# 

to 6094). 

4.3.3*4 Results for the Degenerate Distributions 

The degenerate distributions used in this study exhibit 

constant relative error of .3, .5» or .8. Results on the 

relative conservatism of MUAS for these distributions are 

reported in Tables 4.13 and 4.14. 

Degeneracy in the relative error distribution violates • 

the assumption of MUAS that the test statistic, S_, is con­

tinuous and invalidates use of the continuity correction* 

For example, if the distribution is degenerate at .5, we would 

normally require two observations of overstatements before 

recording an error (.5+.5=1). However, with the continuity 

correction, one occurrence is sufficient to record an error. 
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For fixed sample size tests, it is easy to transform the 

problem to obtain an exact test. For sequential MUAS, the 

effects are not apparent. 

To illustrate the needed transformation, consider the 

degenerate .5 distribution. Test 1.3F has a critical value 

of 4* hence it is necessary to observe 7 occurrences of 

overstatement in order to reject ((7)(.5)=3.5+.5 for the 

continuity correction). Transform the error rates as follows: 

p£=P1/.5*.0l/.5».02 and p£=p2/.5=.05/.5=.10. Then test 1.3F 

is risk equivalent to the following test 1.3F': 

R^: p'».02 

H2: p'=.10 

with n*=95 and C=7. The nominal level and power of test 1.3F' 

are .012 and .954, respectively. Then the expected value 

of RCt01 for the test is (.034-.012)/.034=.647. (The nomi­

nal value .034 is taken from Table 4.4.) This expected value 

is within half a standard deviation of the observed value of 

.585 in Table 4.13. Similarly, we find RC^05=.695 which is 

within one and a half standard deviations of the observed 

value, .775. 

By this method, we may assess the impact of degeneracy 

on fixed sample size MUAS. It is clear that it may cause 

RC to go negative (e.g. test 2.IF for the degenerate .5 dis-

tribution). 

The error variances for test populations with degenera­

cies may be computed from (92) as Var(X)=p(p'-p), where p' 

is the point of degeneracy. They are given in the table 
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below for the degenerate distributions tested and for the 

control distributions (degenerate at 1 .0 ) : 

Point of Degeneracy 
_M2 LS -8 1.0 

p-.Ol .0020 .0049 .0079 .0099 
p-,05 .0125 .0225 .0375 .0475 

By comparing these variances with those of Table 4.2, we see 

that a degeneracy at .3 i s comparable to the low J d i s t r i ­

bution, .5 i s comparable to the high J-100, and .8 is more 

variable than the uniform. However, except for p'=.3» the 

results here are rather different from those for the compara­

b le nondegenerate distributions. We would expect RC t o de­

cl ine as p' increases. And th i s occurs i n , say, test 1 . 1 . 

However, a different pattern i s obserred in 1.5 and 2 .6 . 

Furthermore, similar shift3 in p' can produce both s i g n i f i ­

cant and insignificant changes in RC . For example, in test 

1 .2 , for p=.01, the shift from .3 to .5 produces a dramatic 

drop in RC while the shift from .5 to .8 has an ins ign i f i ­

cant effect . 

It would appear from Tables 4.13 and 4.14 that the ef­

fec ts of degeneracy on sequential MUAS tend to follow the 

effect's on f ixed sample s ize MUAS. If t h i s i s true in gen­

eral , i t i s at least possible to predict the effect of any 

given degeneracy on sequential MUAS from the expected ef fect 

on i t s fixed sample size counterpart. It would, then, also 

appear that any significant increase in r isk due to degeneracy 

w i l l be in type I risk. 
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In developing MUAS, I have assumed that degeneracies of 

the type tested here do not occur in accounting populations. 

Although presumably rare, they could occur due to a systematic 

bookkeeping error. For example, a clerk could systematically 

understate purchase discounts in a scheme to abstract funds 

from the employer. This could result in a constant error rate 

for overstated inventory items. Under these circumstances, 

it would seem that, depending on the parameters of the MUAS 

test, the auditor's type I risk might exceed the nominal risk. 

This is not a particularly discouraging result, since, in the 

event of rejection, the auditor will, in fact, search for 

sources of systematic error. And, while the error may not be 

material in the current period, its discovery and correction 

may forestall a material error in future periods. 

4.3*4 Other Considerations 

In this section, we will consider the power function of 

MUAS and its implications with regard to choice of test. For 

the time being, I limit the discussion to classical tests. 

We have restricted MUAS to the testing of simple hypotheses. 

This is an admitted simplification of the problem. The error 

rate p can lie anywhere in the interval from 0 to 1. Consider 

the alternative test 

H,': p<p* 
^ (109) 

H2: p£p* 

where p* is a material error rate. In the N-P framework, we 

cannot conduct a reasonable test of (109) as it stands. This 



www.manaraa.com

95 

so because, i f type II risk at p=p* i s (I , then, as p approaches 

p* from the l e f t , type I risk approaches 1 - / 3 . This d i f f icul ty 

i s removed i f we are willing to use an Indifference zone. That 

i s , we introduce a p' < p* such that, i f p' < p < p*, we are indif­

ferent to the decision made. Thus, we control type I risk at 

p' and type II r isk at p*. Since the power function i s mono-

tonically increasing in p, these are the maximum risks we face 

for p^p' and p ^ p * , respectively. Thus, (109) i s equivalent to 

H£: P=p' 
^ (110) 
Hg: p « p * 

And, letting p,=p' and p2=p*, we arrive at the MUAS construction. 

While use of simple hypotheses, if interpreted in this way, 

does not represent a constraint in the N-P framework, we must 

nevertheless consider the performance of MUAS when p is not 

one of the two hypothesized values. 

We will consider the power function of only one test (1.1) 

for only two relative error distributions (low J and uniform). 

However, this should be adequate to indicate the general nature 

of the power function of MUAS. The empirical power of test 

1.1 (fixed sample size and sequential) against various values 

of p from .005 to .07, based on 500 replications, is given in 

Table 4.15. The observed average sample sizes (ASN) are also 

given there. The theoretical power assumes a binomial error 

distribution (all relative errors equal 0 or 1). The empiri­

cal power functions of 1.1F are plotted against the theoreti­

cal power function in Figure 4.20. The power functions of 1.13 

(which are not plotted) would be shifted slightly to the right. 
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From Figure 4.20, i t i s clear that the effect of nonde­

generate re lat ive error distributions i s a rotation of the 

theoretical power counter-clockwise with, perhaps, a small 

sh i f t to the l e f t . (To simplify description, we will c a l l 

the p such that /i(p)=.50 the midpoint of the power function.) 

Based on the performance of MUAS at P=Pi and p=p2 for the var­

ious relative error distributions tested ear l ier , i t i s rea­

sonable to conclude that the power functions for high J, low 

J-100, e tc . l i e between those for the low J and the uniform. 

It i s also reasonable to conclude that a decreasing error 

variance tends t o increase the slope of the power function 

near i t s midpoint. (In the l i m i t , when the error variance 

i s zero, the power function jumps from 0.0 to 1.0 in the 

v i c in i ty of the theoretical midpoint.) The location of the 

midpoint, then, i s of some importance in choosing an MUAS t e s t . 

In addition, we observe that the ASN for nondegenerate d i s t r i ­

butions tends t o exceed the theoretical bound when p, < p < p 2 . 

For p near the midpoint, the sequential sample s ize w i l l equal 

the optimal f ixed sample s ize fair ly often, particularly for 

low error variance distributions. While t h i s has implications 

for the choice o f sequential MUAS t e s t , i t must be kept in 

mind that sequential MUAS i s being advanced as a means of early 

detection of out l i ers , i . e . p < P 1 or p>P2« 

In a recent paper, Duke e t al . (1982) compared the power 

functions of several s t a t i s t i c a l substantive test procedures. 

Their results are not direct ly comparable with those in Table 

4.15 because they test p,=.00 versus p2=.02 and control e i ther 
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type I risk at p, or type II risk at p 2 but not both. Further, 

for reasons to be discussed, p=.02 is usually an unrealistically 

low alternative. Temporarily adopting the notation used by 

Duke et al., let M be a material error rate. As constructed 

by these authors, a good test would exhibit a power function 

rising from ex. at p«M-e to 1-/2 at p=M for some small e. In 

particular, they require e^.5M. Unfortunately, for reason­

able values of M, ot., and (I (say, $ .1), this constraint will 

yield very large sample sizes. In fact, such a constraint 

may lead to the conclusion that a purposive sampling plan de­

signed to cover 100(l-M)£ of book value is preferable to a 

random sampling plan. (This is, for example, probably the 

case if we set M=.02, since then .5M=.01, and it is clear 

that very large sample sizes are needed to discriminate with 

reasonable accuracy between p=.01 and p=.02, if the sampling 

is at random.) 

We will consider the power characteristics of MUAS along 

the lines of the Duke et al. construction but with the fol­

lowing modifications: (i) materiality will be treated as an 

interval, rather than point, concept, and (ii) purposive samp­

ling of large subunits in the population will be allowed. The 

Duke et al. discussion is incomplete in these two areas. In 

addition, they do not address the impact of multiple tests on 

the design of a particular component test. This problem has 

two dimensions. The first is the impact of compliance tests 

on subsequent substantive tests. The second is the impact of 

other substantive tests on a particular substantive test. This 
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area has been the subject of research. But i t i s a complex 

problem, discussion of which would carry us far a f i e ld , hence 

we, too, wi l l consider only the isolated tes t . 

All discussions of audit materiality with which I am 

familiar have recognized the di f f icul ty of establishing a 

"threshold" of materiality. For example, Mautz and Sharaf 

(1964, p. 105) refer to "borderline assertions" that are "more 

than Immaterial but l e s s than def inite ly material." The reluc­

tance of standard-setting bodies to incorporate quantitative 

materiality rules i s an implicit recognition of t h i s grey area 

( see FASB, 1980, Appendix C). For purposes of formal develop­

ment, we have taken p 2 as the material error rate. But i t i s 

unreal is t ic to assume that an auditor i s able to specify a 

material error rate M such that M-e i s immaterial for some 

small e. Rather, i t i s reasonable to suppose that an auditor 

i s able to specify, for a given population, an error rate M' 

that i s marginally material and an error rate M* that i s cer­

ta in ly material, with M*<M*. There are at least two objective 

interpretations of these error rates. The f irst i s that, in 

the auditor's judgment, the decisions of some reasonable users 

of the f inancial statements would be affected by knowledge of 

an undisclosed M' error r a t i in the population, while the de­

c is ions of a l l reasonable users would be affected by knowledge 

of an undisclosed M* error rate. A second interpretation, more 

in accord with current l ega l views on materiality, i s that there 

i s a moderate likelihood that the decisions of a reasonable 

user would be affected by knowledge of M' but virtual certainty 
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i f the error rate i s M*. In addition, I assume the auditor 

i s able to specify an error rate m that i s certainly immater­

i a l . That i s , an undisclosed m error rate would affect no rea­

sonable user, or there is v irtual ly no likelihood that i t would 

affect a reasonable user. Although i t i s possible that m>0, 

I wil l assume that m=0. 

The value of th is construction l i e s in i t s implications 

for the choice of t e s t . We have immediately that m£p,< M'^ p2 

^M*. Further, we are able to characterize the desired power 

function to some degree. We require that ( i) the power against 

m i s quite low, ( i i ) the power against M' i s moderate (since 

we are rather indifferent about detecting a marginally material 

error r a t e ) , and ( i i i ) the power against M* i s quite high. If, 

as agreed, we set m=0, then /i(m)=0.0 in a l l MUAS t e s t s , hence 

we need not be concerned with the power function at this point. 

(This i s not true for a l l s t a t i s t i c a l substantive procedures.) 

A power function r is ing from about /S(M')=.50 to /3(M*)=.99 

might sa t i s fy the remaining requirements. If we set equal de­

cision r isks ( i . e . /2(p.)=l- /3(p 2 ) ) , then choosing p, and p 2 

equidistant from M' should y ie ld /3(M')=.50. (Since there 

wil l typical ly be considerable latitude in the choice of p, 

and p 2 , the use of equal decision riBks i s not particularly 

constraining, but, regardless, we are only suggesting one 

poss ib i l i ty for specifying the test in a reasonable manner.) 

Beyond t h i s , choice of p., and p2 represents a tradeoff. A 

re lat ive ly smaller indifference zone i s usually preferable, 

especial ly for sequential implementation, but optimal fixed 
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sample s ize i s quite sensit ive to the size of this zone. We 

w i l l return to this question later. 

In the following example, we take M'=.02 and M*=2M'=.04. 

A reasonable choice for pg i s p2=(M'+M*)/2=1.5M'=.03. Then 

if we set p,=.5M'=.01, M' w i l l be roughly the midpoint of the 

indifference zone, i f equal decision risks are used.. This 

corresponds to the Duke et a l . setup except that we treat p=.02 

as marginally material. If we set c<. = ^ ( . 0 l ) < .1 and 1-/1 = 

A (.03) ^ . 9 , we arrive at n=320 and C=6 as the best t e s t . The 

theoretical power function of the (fixed sample s ize) teat at 

several points i s presented below: 

iLLsl 
.005 7006 
.0075 .035 
.01 .104 
.015 .349 
.02 .618 
.025 .812 
.03 .919 
.035 .969 
.04 .989 
.05 .999 

This plan provides considerable ultimate protection against 

M*=.04 even i f we face a binomial error distribution. If, on 

the other hand, a low error variance distribution i s encountered, 

the power function wi l l be quite steep in the v ic ini ty of p=.02, 

^ ( . 0 1 ) w i l l be s ignif icantly lower than .104, and £ ( . 0 3 ) w i l l 

be s ignif icantly higher than .919. 

We now allow purposive sampling of large subunits. We 

l e t q be the proportion of book value covered by the purposive 

sample. It i s clear that, i f M i s a material error rate prior 

to purposive sampling, then M"=M/(l-q) i s material subsequent 
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to the purposive sample (i.e. for the random sample of the re­

maining subunits). This can have a significant impact on the 

statistical test. For the example above, we transform the 

parameters and recompute the necessary sample size for various 

values of q. (For consistency, we also let p?=Pi/(l-q) and 

similarly for pjj.) 

a 
.00 

.33 

.50 

.75 

, JP± 

.01 

.015 

.02 

.04 

M' 
.02 

.03 

.04 

. 08 

P2 

.03 

.045 

.06 

.12 

M* 
.04 
.06 
.08 
.16 

n 
320 

205 
160 

78 

C 
6 
6 
6 
6 

Now, q».75 may seem unrealistically high. However, our study 

population is based on Neter and Loebbecke's (1975) population 

4 in which the "very few" excluded subunits (those over $25,000) 

accounted for 75$ of book value. Neter and Loebbecke excluded 

these subunits precisely because they assumed they would be 

purposively selected by an auditor (Neter and Loebbecke, 1975, 

p. 25). In the only other complete population used by these 

researchers, population 3» the excluded subunits accounted for 

33$ of book value. 

It is clear that purposive sampling of large subunits 

can dramatically reduce the necessary size of the random sample. 

Furthermore, based on the high degree of skewness in the dis­

tribution of subunit size typically found in accounting popu­

lations (e.g. Neter and Loebbecke (1975)» Johnson et al. (1981)), 

it would appear that purposive sampling of large subunits will 

often significantly impact the statistical test of the remaining 

subunits. 
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Before turning to Bayesian MUAS, we will pause to recon­

sider test 1.1 and the question of choice of p, and p2. Given 

the theoretical power function in Table 4.15, test 1.1 is ap­

parently appropriate if M'=.03 and M*=.06, which is the situ­

ation in our example for q=.33. However, in test 1.1, we set 

o(. = (i=.05 with p,s.01 and p2=.05 rather than «.= §=. 10 with 

p,=.015 and p2=.045. For the latter test, the indifference 

zone is smaller, but the optimal fixed sample size is larger. 

A brief comparison of their theoretical power functions is 

given below: 
fiifil 

p n=182 n=205 
.005 .002 .001 
.01 .037 .018 
.015 .142 .090 
.02 .301 .229 
.03 .640 .581 
.04 .856 .832 
.045 .916 .903 
.05 .952 .946 

.06 .986 .985 

The latter test provides better protection against a type I 

error at the cost of larger sample sizes if .015<p<>045. 

This kind of tradeoff must be assessed by the decision-maker. 

We now consider the relation of Bayesian MUAS and the 

power function. First, the Bayesian framework does not help 

in the choice of p̂^ and p2. But, given p^» P2» a n d M'» Bay~ 

esian MUAS gives an alternative, and perhaps superior, means 

of choosing sample size. Assume that, in the event of rejec­

tion, a purposive sample covering 100(1-M')$ of book value 

will be taken. Assume further that this is also what the 

auditor would "pay" to forego a type II error. Thus, K^gsKg^sK. 
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2250 

2000 

1800 

1300 

248 
202 
178 

115 

5 
6 

7 
9 

Of course, K is decreasing in M'. Given the same parameters 

as our classical example, a table of the comparable Bayesian 

tests is given below. The value of X is based on our study 

population (Table 4.1), i.e. for M'=.02, it is necessary to 

examine approximately 2250 of the largest subunits to cover 

98$ of book value, etc. The prior for H^ is .5 for all tests. 

o P X M' P : M* X n C 

.00 .01 .02 .03 .04 

.33 .015 .03 .045 .06 

.50 .02 .04 .06 .08 

.75 .04 .08 .12 .16 

From a Bayesian perspective, it would appear that our classi­

cal test for q=.00 is too conservative and for q=.75 is too 

liberal, for our study population. Note, however, that the 

Bayesian construction is directly sensitive to the skewness 

of subunit size in the population through the specification 

of X (in USCs), regardless of the value of q. But the classi­

cal construction is sensitive to this skewness only indirectly 

through the specification of q. 

Finally, it must be observed that the test in (109) does 

not reduce to that in (110), in the Bayesian approach, with­

out some arbitrary simplification. To test (109) would require 

assessing a continuous prior (or reasonable discrete analog 

thereof). This constitutes a well-studied behavioral difficulty. 

Beyond this behavioral difficulty, there is a nontrivial in­

crease in technical complexity. Given the uncertainty of the 

benefits to be derived, I have adopted the position that the 

simplified construction should be shown defective before the 

more realistic construction is embraced. 
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4.4 Summary 

In th i s sect ion, we wil l reiterate rather generally the 

strengths and weaknesses of MUAS and also discuss some issues 

that were deferred in order t o keep the development reasonably 

uncluttered. 

The Monte Carlo study tends t o support the use of MUAS 

in substantive testing for overstatement in asset balances. 

In general, the claim that the actual risks of MUAS are bounded 

by the nominal risks based on a binomial error distribution 

holds for the nondegenerate relat ive error distributions con­

sidered i n the study. Indeed, i f the error variance i s s igni ­

ficantly leas than that of the binomial error distribution 

(as would typically be the case for certain gamma-type relative 

error distributions) , MUAS i s quite conservative. That i s , 

the nominal r isks, based on the binomial error distribution, 

wi l l s ignificantly overstate the actual risks at the hypothe­

sized error rates (p. and p . ) . For other values of the error 

rate, the effect of low error variance distributions i s essen­

t i a l l y a counter-clockwise rotation of the power function for 

the binomial error distribution about the midpoint of the i n ­

difference zone, with the result that the true power function 

may be s ignif icantly steeper than the nominal power function 

in the v i c in i ty of the midpoint. 

There i s both analytic and empirical evidence that gamma-

type, low error variance relative error distributions occur 

frequently in accounting populations. The anlyt ic evidence 

i s based on the following kinds of argument. Posit ive relative 
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errors occur more or less uniformly on the unit interval in 

the accounting process, however, the effectiveness of accounting 

controls imposed by an entity's management is an increasing 

function of the magnitude of the relative error. Thus, such 

controls operate as a filter, converting, say, a uniform 

relative error distribution into a gamma-type distribution. 

Alternatively, the accounting process, with controls, may be 

viewed as yielding a normal (positive and negative) relative 

error distribution (truncated at 1 on the right), with zero 

mean and variance depending on control effectiveness. The 

positive relative errors, then, follow a gamma-type distribu­

tion. Empirical evidence for such distributions is mainly 

derived from the limited number of accounting populations 

described by Johnson et al. (1981). 

However, from both analytic and empirical viewpoints, it 

would appear that 100$ positive relative errors may be inde­

pendently generated. Johnson et al. found several populations 

with high proportions of such errors. And Duke et al. (1982) 

suggest that one fraud strategy is the use of entirely fic­

titious subunits to achieve a material overstatement in the 

population. Thus, reliance on an assumption that relative 

errors follow a gamma-type distribution (e.g. Cox and Snell 

(1979)) does not appear warranted without considerable investi­

gation of the robustness of such an assumption against high 

error variance populations. That is, it would appear that 

auditors must use procedures that are conservative under 

typical circumstances in order to obtain nominal protection 
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in atypical circumstances. MUAS is such a procedure. 

The principal drawback of conservative procedures is 

excessive sample size. Sequential MUAS has been advanced as 

a reasonable solution to this dilemma. When the true error 

rate p is either significantly better or worse than expected, 

sequential MUAS will typically detect this fact at moderate 

sample sizes. Furthermore, these moderate sample sizes will 

be attained without adopting an unrealistic model (e.g. use 

of discovery sampling when some positive error rate is both 

expected and tolerable) or sacrificing power against material 

error rates. Sequential MUAS, then, is best viewed as a scheme 

for the early detection of "outliers" (i.e. pK?^ or p>p 2). 

(Elliott (1976) first advanced this view of sequential audit 

tests.) If p<p,, the client should not be burdened with 

excessive sampling cost since he has performed better than 

auditor expectations. If p>p2, excessive sampling is again 

unwarranted, but for the reason that audit resources are bet­

ter expended to assist the client in remedial work on the 

balance in question. However, when p,<p<p 2, the situation 

is not so clear, and the auditor may very well need additional 

sample information in order to make a reasonable decision on 

how to proceed if indeed H, is rejected. A primary drawback 

of the SPRT is the potentially large sample size that may be 

required under these circumstances. Hence, the truncation 

rule adopted in sequential MUAS (stopping at the optimal fixed 

sample size if no decision is made earlier) is an important 

component in the applicability of sequential testa in auditing. 
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The performance of sequential MUAS i s more or l e s s sen­

s i t i v e to other factors considered i n the Monte Carlo study. 

The following matrix indicates , in a qualitative way, the 

u t i l i t y of sequential MUAS. 

efficiency effectiveness 
p£Pi P £ P 2 P £ P X P 2 P 2 

low error 
low variance 

nominal 
risk high error 

variance 

low error 
high variance 

nominal 
risk high error 

variance 

The avai labi l i ty of sequential implementation i s , perhaps, 

the principal advantage of MUAS over current s t a t i s t i c a l audit 

methodology. However, there are other advantages. MUAS i s 

the f i r s t s t a t i s t i c a l substantive procedure cast entirely in 

the test ing framework. Although confidence procedures can 

be used to make decisions, the terminology and construction 

of s t a t i s t i c a l t e s t s i s a more natural framework for audit 

t e s t s . Moreover, MUAS i s derived from PUAS and thus unifies 

s ta t i s t i ca l auditing (compliance and substantive) conceptually 

in terms of a readily accessible alscrete probability structure 

(the binomial distribution) . Not only does this unification 

simplify implementing s t a t i s t i c a l testa in an audit, I hope 

that MUAS w i l l s ignif icantly f a c i l i t a t e s t a t i s t i c a l audit 

good 

good 

fair 

fair 

excellent 

excellent 

good 

good 

excellent 

good 

excellent 

fair 

excellent 

good 

excellent 

good 
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pedagogy. 

The ready availability of a "worst case" power function 

for MUAS is also a distinguishing feature. That is, in the 

event that a binomial error distribution is encountered (which 

is essentially the "worst case" for MUAS), the auditor can 

easily compute the power against any error rate or consult 

binomial or Poisson tables. This should be of assistance to 

the auditor in choosing an appropriate test. The power func­

tion of a sequential MUAS will be somewhat different than that 

of the corresponding fixed sample size MUAS test. However, 

the power of the sequential test can be computed, and I have 

provided an algorithm for this purpose. This algorithm should 

be efficient for typical audit sample sizes. 

A major contribution of Bayesian MUAS is a new sequential 

procedure appropriate for audit use. In addition, the Bayesian 

construction of MUAS incorporates certain simplifications 

over previous Bayesian models proposed for audit testing. In 

developing Bayesian MUAS, I have adopted the simple construc­

tion of a two-point parameter space and discrete prior under 

the assumption that a simple construction should be shown 

defective before more complicated constructions are espoused. 

The Monte Carlo study performed here does not directly address 

this question, but there is no evidence in the Monte Carlo 

results of defective construction. In fact, Bayesian MUAS 

appears reasonably robust against prior misspecification, a 

worrisome aspect of Bayesian models. Against values of p other 

than those hypothesized, Bayesian MUAS shares the power 
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characteristics of c lass ica l MUAS. 

Simplified construction i s a lso evident in the choice of 

l o s s function and scale. Use of the unit sampling cost (USC) 

as the l o s s scale should ease the implementation of Bayesian 

MUAS over both different audit c l i ents and different test ing 

situations for the same c l i e n t . (The usefulness of th is scale 

was apparent in the discussion of Bayesian tes t s in section 

4.3 .4 above.) And we have excluded any cost to access the 

sampling frame (startup c o s t s ) . This i s a one-time fixed cost 

(not, as Kinney (1975, p. 123) claims, a fixed cost that w i l l 

be incurred at each sampling s tage) . It w i l l be incurred r e ­

gardless of the decision taken, i f any sampling i s done. Hence 

i t affects only the decision of whether or not to sample. This 

decision i s based only in part on the startup costs . An attempt 

to formalize th is decision at the test ing l e v e l appears counter­

productive. 

We now consider some of the (real or apparent) deficiencies 

of MUAS. I have assumed throughout that, i n the event of r e ­

jection, remedial work on the population w i l l be performed by 

the auditor or the client (or both). Some auditors have advo­

cated the use of stochastic adjustments, i . e . a proposed adjust­

ment to the population book value based on a s t a t i s t i c a l e s t i ­

mate of the true value (see , e .g . , Loebbecke and Neter (1975)). 

Although I do not advocate the use of stochastic adjustments, 

MUAS does provide an unbiased estimate of the population error 

rate , namely, s ' / n . Further, an unbiased estimate of the var­

iance of the estimator SQ/n i s available (Cochran (1977, p. 308)) . 
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Large-sample confidence intervals using this variance estima­

tor have not proved especially accurate when few errors are 

encountered (Neter and Loebbecke (1975))» primarily because 

the variance estimate i s zero i f no errors are found. However, 

a stochastic adjustment would be needed only i f H- is rejected. 

This typically w i l l require observing several errors. Thus, 

large-sample confidence intervals constructed only when H. i s 

rejected may be rather accurate. These conditional confidence 

intervals wil l di f fer from the usual unconditional intervals 

which, i f used in these circumstances, would have lower than 

nominal coverage probability. While i t i s possible to compute 

the appropriate conditional interval, i f we are interested only 

in the upper confidence bound (UCB), then the unconditional UCB 

will l i e to the right of the conditional UCB in MUAS t e s t s , and, 

so, the unconditional upper confidence coefficient will be at 

least as large as the conditional coeff icient. Hence, use of 

an unconditional 100(l-oO$ UCB o n P m a v b e viewed aa a conser­

vative approximation to the conditional UCB. (See Meeks and 

D'Agostino, American Statistician (May 1983), p. 134-136. Note 

that their objections to the use of conditional intervals re­

lates t o the behavior of the. lower confidence bound.) 

Both in PUAS and in MUAS, we have used sampling with re­

placement. In a labeled f i n i t e population, sampling without 

replacement i s generally superior. However, by assuring in ­

dependent and identically distributed random variables, random 

sampling with replacement considerably simplifies the proba­

bi l i ty structure of a sampling plan. In fact, in sampling 

with unequal probabilities of selection (as i n MUS viewed as a 
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subunit selection method), the analysis in the case of sampling 

without replacement becomes quite complex (Cochran (1977, p. 

308ff)). This complexity has led some (e.g. Duke et al. (1982)) 

to use sampling with replacement for MUS procedures and others 

to use sampling without replacement but analyze the results 

as if the observations were independent (see discussion in 

Cox and Snell (1979)). 

While I have used sampling with replacement primarily to 

simplify the analysis, I will offer an alternative defense for 

its use. In MUAS, if two or more dollars are selected from 

the same subunit, each dollar counts as a valid observation, 

but the subunit need be audited only once. Thus, it is only 

necessary to tag sample dollars from the same subunit at the 

time the sample selection is made. But, if we use sampling 

without replacement, this is precisely what we must do to 

avoid duplicate choices, if the sampling is at random. (Since 

the probabilities of selection are unequal. it is not sufficient 

to coerce the random number generator into passing over dupli­

cates. That is, two different numbers may still select the 

same subunit.) Thus the cost of random sampling with and with­

out replacement in MUAS is essentially the same. (A systematic 

sampling scheme does not require tagging, however, such a plan 

introduces additional analytic difficulty and the need for 

additional assumptions.) In PUAS, on the other hand, we have 

used sampling with replacement because the populations involved 

are usually large and the probability of duplicate selection 

is quite low. Here, although the preferable scheme is well 
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understood (requiring use of the hypergeometric instead of the 

binomial distr ibut ion) , the added complexity provides l i t t l e 

benefit. 

A f i n a l disadvantage of MUAS i s i t s fa i lure to address 

the problem of understatement in l i a b i l i t i e s and asse ts . 

(Overstatement of l i a b i l i t i e s , while not usually a concern of 

an independent auditor, may be treated by MUAS as i t stands.) 

Understatement of l i a b i l i t i e s , which leads t o an overstatement 

of income, i s a major concern of independent auditors. However, 

no s t a t i s t i c a l procedure currently available to auditors ade­

quately deals with t h i s problem. The di f f icul ty i s the lack 

of a reasonably complete sampling frame. In the case of accounts 

payable, for example, the balance i t s e l f cannot be assumed to 

be complete, since omissions of entire subunits are not only 

possible but probable. To apply MUAS we must find a reasonably 

complete frame. For example, i f the c l i ent ' s payables turnover 

i s about 6, and the cash disbursements system i s re l iable , the 

f i r s t 60 days' disbursements in the subsequent period may serve 

as a frame for the tes t ing of accounts payable. In t h i s s i tu ­

ation, val id disbursements are those for debts arising subse­

quent to year-end. or for debts recorded in accounts payable 

at year-end. Invalid ("overstated") disbursements are those 

for debts arising before year-end but not l i s t e d in accounts 

payable at year-end. These "overstatements" will l i e in the 

unit interval , and the test may proceed as with asset balances. 

The understatement of assets , as the overstatement of l i a b i l i ­

t i e s , i s usually not the concern of independent auditors. A 
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statistical test again depends upon finding a reasonably com­

plete frame (for example, the last 60 days' sales in the period 

for an accounts receivable balance). While any understatements 

observed in the course of an MUAS test for overstatement can 

be corrected, the theory does not permit netting thsa<? against 

observed overstatements. 
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TABLE 4 .1 

Study Population Characteristics 

Total Book Value: 8,988,750 

Number of Subunits: 4,000 

Distribution of Subunits by Size: 

Subunit Size 

(in dollars) 

75 
150 

300 

600 

1200 

2400 

4800 

9600 

19200 

Totals 

Frequency 

1050 

700 

450 

350 

450 

400 

150 

250 

200 

4000 

Relative 

Frequency 

.26 

.18 

.11 

.09 

.11 

.10 

.04 

.06 

.05 

1.00 

Cumulative 

Value 

78750 

183750 

318750 

528750 

1068750 

2028750 

2748750 

5148750 

8988750 
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TABLE 4.2 

Summary S ta t i s t i c s of the Test Populations 

Error* Partial Tainting'1' 100$ Tainting'1' 
Distribution Mean Variance Dollars Subunits Dollars Subunits 

Low J 
High J 
Low J-100 
High J-100 
Low Unimodal 
High Unimodal 
Uniform 

Low J 
High J 
Low J-100 
High J-100 
Low Unimodal 
High Unimodal 
Uniform 

.0095 

.0100 

.0104 

.0097 

.0098 

.0103 

.0104 

.0501 

.0498 

.0496 

.0497 

.0500 

.0497 

.0504 

.0019 

.0031 

.0035 

.0048 

.0045 

.0049 

.0068 

.0068 

.0166 

.0160 

.0239 

.0236 

.0253 

.0303 

.0809 

.1024 

.0928 

.0768 

.0216 

.0247 

.0203 

.5005 

.4801 

.3800 

.4213 

.0998 

.0986 

.1043 

.0808 

.1160 

.0723 

.0853 

.0195 

.0193 

.0170 

.4978 

.4980 

.3793 

.4255 

.1100 

.0925 

.1040 

__ 

— 

.0023 

.0025 
— 

— 

— 

- . 

— 

.0115 

.0121 
— 

~ 

— 

__ 

— 

.0015 

.0028 
— 

— 

~ 

— 

— 

.0110 

.0125 
— 

— 

— 

•error mean=error rate as given in (91). i . e . p=X/N 
error variancesVar X as given In (92) 

+a "tainted" subunit i s one that i s part ial ly or 100$ in error; 
these columns measure the proportion (re la t ive to t o t a l book 
dol lars) of dol lars in tainted subunits and the proportion 
(re la t ive to t o t a l subunits) of tainted subunits 
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TABLE 4.3 

Classical Tests Performed in the Study 
H1: p=.01 vs . H2: p».05 

Test 
1.1 
1.2 
1.3 
1.4 
1.5 
1.6 

Level* 
.05 
.05 
.05 
.10 
.10 
.10 

Power* 
.95 
.90 
.85 
.95 
.90 
.85 

Sample Size 
182 
134 
120 
155 
107 

94 

Crit ical Value 
5 
4 
4 
4 
3 
3 

•target nominal r i sks ; since the underlying distribution 
i s d i screte , these target r isks are not exactly attainable 
(without randomizing over decision rules); exact nominal 
r isks for the c l a s s i c a l t e s t s used are given In Table 4.4 
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TABLE 4.4 

Nominal Risks of the Classical Tests 
H :̂ p=.01 vs. H2: p=.05 

T e s t ( l ) 

1.1F 

1.2F 

1.3F 

1.4F 

1.5F 

1.6F 

1.13 

1.23 

1 .33 

1.43 

1.5S 

1.63 

T h e o r e t i c a l v < : / 

Level 

.038 

.047 

.034 

.072 

.094 

.070 

.039 

.046 

. 0 3 1 

.076 

.092 

.066 

Observed w / 

Power Level Power 

.948 

.901 

.849 

.950 

.902 

.848 

.930 

.870 

.800 

.935 

.877 

.808 

.041 
[.004) 

.046 
[.004) 

.036 
[.004) 

.066 
[.005) 1 

.088 
; .006) ( 

.066 
, .005) ( 

.040 
1.004) < 

.044 
: .004) ( 

.035 
, .004) ( 

.065 
' . 005) ( 

.087 
; .006) ( 

.065 
, .005) < 

.950 
[.004) 

.907 
(.006) 

.847 
; .007) 

.956 
[.004) 

.895 
; .006) 

.845 
; .007) 

.926 
[.005) 

.860 
; .007) 

.787 
; .008) 

.935 
: .005) 

.861 
, .007) 

.795v 
, .008) 

'F=fixed sample s i ze , S=aequential 
(2) 

(3) 

for fixed sample size tests, risks calculated using Poisson 
approximation to the binomial; for the sequential tests, 
risks calculated using the binomial by the method in (21) 

based on 2500 replications on the control distributions; 
the standard deviation is shown in parentheses 
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TABLE 4.5 

Sample Sizes of the Classical Tests 
B^: p=.01 v s . H2: p=.05 

Note: observed average sample s i z e (ASN) is based on 2500 
replications on the control distributions; standard 
deviation of the ASN i s l e s s than 1.0 f o r a l l t es t s 

ASN 

Bound'*' Observed 
Test 

1.1 

1.2 

1.3 

1.4 

1.5 

1.6 

n» 

182 

134 

120 

155 

107 

94 

P». 01 

105 

79 

64 

100 

69 

57 

Dm.05 

82 

70 

62 

68 

47 

46 

o=.01 

102 

76 

64 

96 

69 

57 

p=.05 

78 

64 

62 

62 

48 

47 

"""computed using the approximation given by (33) in section 3 .2; 
the resu l t s are exact for tests 1 .3 , 1.5, and 1.6 
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Test 

2.1 
2.2 
2.3 
2.4 
2.5 
2.6 

TABLE 4.6 

Bayesian Tests Performed 

Prior for 

.4 

.5 

.6 

.7 

.8 

.9 

V 
*1 

p=.01 vs. R*2: 

Sample Size 

95 
120 
112 
102 
88 
34 

in 
p=, 

the 
.05 

Study 

Critical Value 

2 
3 
3 
3 
3 
2 

Note: losses of £^2=600 and £,,,=1500 are used in al l tests; 
see Table 0.6 for the nominal risks of these tests 
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/ . V 

T e s t u ; 

2.IF 

2.2F 

2.3F 

2.4F 

2.5F 

2.6F 

2.13 

2.23 

2.33 

2.43 

2.53 

2.63 

TABLE 4 

Nominal Risks of the 
H,: pa.Ol v s . ] 

Theoretical^2* 
R(.Ol) 

242.51 

192.31 

174.19 

152.41 

123.76 

61.74 

237.89 

162.39 

135.42 

106.68 

75.50 

28.83 

R( .05) 
169 .62 

212.95 

235.58 

276.72 

365.71 

773.87 

105.93 

154.07 

206.36 

293.90 

449.88 

1024.03 

.7 

Bayesian Tests 
S2: p=.05 

Observed w ' 
R(.Ol) 
234.92 

( 5 . 0 7 ) 

184.32 
( 3 . 7 1 ) 

168.40 
(3 .50 ) 

150.00 
( 3 . 2 6 ) 

122.56 
(2 .80 ) 

64 .00 
( 2 . 6 1 ) 

230.20 
(5 .30 ) 

158.40 
( 3 . 9 3 ) 

129 .28 
(3 .48 ) 

104.48 
(3 .08 ) 

77 .20 
(2 .57 ) 

29 .24 
(1 .92 ) 

R(.05) 
171.80 

(6 .79) 

210.00 
(7 .12) 

232.00 
(8.14) 

286.80 
(10.53) 

375.40 
(11.80) 

776.20 
(15.00) 

114.40 
(6.80) 

159.00 
(7 .77) 

215.60 
(9.36) 

313.20 
(11.35) 

477.40 
(13.52) 

1021.00 
(14.13) 

* 'F=fixed sample s ize , 3=sequential 

^ 'R(p)=R(p,d) as given by (78); for fixed sample s i ze t e s t s , 
E(n)=n* and the Poisson approximation to the binomial is 
used; for sequential t e s t s , the observed ASN i s used for 
E(n) and the binomial distribution i s used by means of (21) 

w 'based on 2500 replications on the control distributions; 
the standard deviation, shown in parentheses, i s computed 
assuming the ASN i s fixed at the observed quantity 
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TABLE 4.8 

Sample Sizes of the Bayesian Tests 
H :̂ p=.01 vs. H2: p=.05 

Note: observed average sample size (ASN) i s based on 2500 
replications on the control distr ibutions; standard 
deviation of the ASN i s less than 1.0 for a l l t es t s 

ASN 

Test 

2.1 

2.2 

2.3 

2.4 

2.5 

2.6 

n* 

95 

120 

112 

102 

88 

34 

Bound"*" 

p=.01 o 

69 

85 

74 

62 

47 

13 

= .05 

30 

47 

48 

49 

47 

15 

Observed 

p=.01 

69 

84 

73 

61 

47 

13 

p=.05 

31 

48 

49 

49 

47 

15 

^computed using the approximation given by (33) in section 3.2; 
the results are exact for a l l t es t s 
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TABLE 4.9A 

Relat ive Conservatism of C l a s s i c a l Sequential MUAS 
H,: p s . 0 1 v s . H2: p=.05 

Table e n t r i e s : mean and standard dev ia t ion ( i n parentheses) 
of the r a t i o RC=(nominal risk-observed r i s k ) /nominal r i sk 

. D i s tr ibut ion 

J-100 Unimodal Uniform 
Test p Low 
1.13 . 01 1.000 

(0 .000) 

.05 1.000 
(0 .000) 

1.2S .01 1.000 
(0 .000) 

.05 1.000 
(0 .000) 

1 .33 .01 1.000 
(0 .000) 

.05 0 .990 
(0 .010) 

1.4S .01 0.974 
(0 .026) 

.05 l.OOO 
(0 .000) 

1.5S . 01 0 .978 
(0 .022) 

.05 1.000 
(0 .000) 

1.6S .01 1.000 
(0 .000) 

.05 0 .990 
(0 .010) 

High Low High Low High 
0.900 

(0.071) 

1.000 
(0.000) 

1.000 
(0.000) 

0.969 
(0.022) 

1.000 
(0.000) 

0.830 
(0.041) 

0.816 
(0.069) 

1.000 
(0.000) 

0.761 
(0.071) 

0.968 
(0.023) 

0.848 
(0.068) 

0.875 
(0.036) 

0.849 
(0 .087) 

1.000 
(O.OOO) 

0.870 
(O.075) 

0.954 
(0 .027) 

0 .871 
(0 .091) 

0.920 
(0 .028) 

0.816 
(0 .069) 

1.000 
(O.OOO) 

0.718 
(0 .077) 

0 .951 
(0 .028) 

0.696 
(O.095) 

0.886 
(0 .034) 

0 .799 
(0.100) 

0 .939 
(0 .043) 

0 .783 
(0 .097) 

0 .877 
(0 .043) 

0.806 
( 0 . U 2 ) 

0 .710 
(0 .052) 

0.657 
(0 .094) 

1.000 
(0 .000) 

0 .718 
(0 .077) 

0 .838 
(0 .051) 

0.696 
(0 .095) 

0 .761 
(0 .049) 

0.900 
(0 .071) 

0.816 
(0 .075) 

0.913 
(0 .061) 

0.724 
(0 .064) 

0 .871 
(0 .091) 

0.710 
(0 .052) 

0.868 
(0 .059) 

0 .784 
(0 .081) 

0 .718 
(0 .077) 

0.773 
(0 .060) 

0 .878 
(0 .061) 

0 .688 
(0 .055) 

0.749 
(0.112) ( 

0.785 
(0.081) ( 

0.696 
(0.114) ( 

0.678 
(0.069) ( 

0.612 
(0.157) ( 

0.579 
(0.062) ( 

0.578 
(0.104) ( 

0.814 
(0.075) ( 

0.653 
(0.085) ( 

0.773 
(0.060) ( 

0.605 
(0.108) ( 

0.657 
(0.058) ( 
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TABLE 4.9B 

Relat ive Conservatism of C las s i ca l Fixed Sample S i z e MUAS 
E ;,: p=.01 v s . H2: p= .05 

Table e n t r i e s : mean and standard dev ia t ion ( i n parentheses) 
of the ra t io RC=( nominal risk-observed r isk) /nominal r isk 

Distr ibut ion 

Test 
1.1F 

1.2F 

1.3F 

1.4F 

1.5F 

1.6F 

_E_ 
.01 

.05 

.01 

.05 

. 01 

.05 

. 01 

.05 

.01 

.05 

.01 

.05 

J-100 Unimodal Uniform 
Low 

1.000 
(0.000 

1.000 
(0.000 

1.000 
(0.000 

1.000 
(0.000 

1.000 
(0.000 

0.987 
(0.013 

0.972 
(0.028 

1.000 
(0.000 

0.979 
(0.021 

1.000 
(0.000 

1.000 
(0.000 

0.987 
(0.013 

.High. Low ligh Low High 

0.894 
) (0.075) 

1.000 
) (0.000) 

0.958 
) (0.042) 

0.960 
) (0.029) 

0.941 
) (0 .059) 

0.788 
) (0.052) 

0.806 
) (0.073) 

1.000 
) (0.000) 

0.765 
) (0 .070) 

0.959 
) (0.029) 

0.828 
) (0 .070) 

0.856 
) (0 .043) 

0 .789 
(0 .105) 

1.000 
(0 .000) 

0 .830 
(0 .084) 

0 .939 
(0 .035) 

0 .822 
(0 .102) 

0 .894 
(0 .037) 

0.806 
(0 .073) 

1.000 
(0 .000) 

0 .658 
(0 .084) 

0 .939 
(0 .035) 

0 .684 
(0 .094) 

0.856 
(0 .043) 

0 .736 
(0 .117) 

0 .923 
(0 .055) 

0 .788 
(0 .094) 

0 .858 
(0 .053) 

0 .822 
(0 .102) 

0 .643 
(0 .067) 

0 .722 
(0 .087) 

1.000 
(0 .000) 

0.594 
(0 .091) 

'0.817 
(0 .061) 

0.655 
(0 .098) 

0.737 
(0 .058) 

0 .894 
(0 .075) 

0.845 
(0.077) 

0.915 
(0 .060) 

0.696 
(0 .077) 

0 .882 
(0 .084) 

0.709 
(0.061) 

0 .861 
(0.062) 

0 .800 
(0 .089) 

0.722 
(0.076) 

0.776 
(0 .067) 

0.828 
(0.070) 

0.724 
(0 .059) 

0.789 
(0.105) ( 

0.729 
(0.102) ( 

0.703 
(0.111) ( 

0.696 
(0.077) ( 

0.704 
(0.132) ( 

0.563 
(0.073) ( 

0.584 
(0.106) ( 

0.761 
(0.097) ( 

0.615 
(0.089) ( 

0.735 
(0.073) ( 

0.655 
(0.098) ( 

0.632 
(0.068) ( 
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TABLE 4.10A 

Relat ive Conservatism of Bayesian Sequential MUAS 

H^: pa.01 v s . H2: p=.05 

Table e n t r i e s : mean and standard deviat ion ( in parentheses) 

of the r a t i o RC=(nominal r isk-observed risk)/nominal r i sk 

Dis tr ibut ion 
J-100 Unimodal Uniform 

Test p 
2.13 . 01 

.05 

2.2S . 01 

.05 

2.33 . 0 1 

.05 

2.43 .01 

.05 

2.5S . 01 

.05 

2.6S . 01 

.05 

Low High Low High Low High 
0.461 

(0.029) 

0.776 
(0.000) 

0.424 
(0.014) 

0.732 
(0.000) 

0.422 
(0.012) 

0.771 
(0.000) 

0.415 
(0.000) 

0.808 
(0.000) 

0.381 
(0.000) 

0.845 
(0.009) 

0.538 
(0.045) 

0.155 
(0.032) 

0.334 
(0.037) 

0.737 
(0.000) 

0.293 
(0.033) 

0.702 
(0.000) 

0.311 
(0.033) 

0.738 
(0.015) 

0.315 
(0.033) 

0.786 
(0.014) 

0.319 
(0.033) 

0.675 
(0.034) 

0.344 
(0.097) 

0.015 
(0.031) 

0.211 
(0.043) 

0.730, 
(0.000) 

0.270 
(0.035) 

0.702 
(0.000) 

0.286 
(0.035) 

0.741 
(0.015) 

0.290 
(0.036) 

0.773 
(0.017) 

0.246 
(0.046) 

0.743 
(0.027) 

0.519 
(0.044) 

-0.015 
(0.031) 

0.193 
(0.044) 

0.702 
(0.000) 

0.270 
(0.036) 

0.628 
(0.034) 

0.274 
(0.038) 

0.658 
(0.035) 

0.281 
(0.038) 

0.681 
(0.034) 

0.282 
(0.040) 

0.539 
(0.044) 

0.344 
(0.097) 

-0 .088 
(0.029) 

0.247 
(0.042) 

0.653 
(0.053) 

0.327 
(0.031) 

0.560 
(0.053) 

0.309 
(0.034) 

0.598 
(0.048) 

0.343 
(0.030) 

0.607 
(0.044) 

0.315 
(0.033) 

0.470 
(0.048) 

0.562 
(0.000) 

0.114 
(0.032) 

0.022 -
(0.049) ( 

0.616 
(0.060) ( 

0.214 
(0.039) ( 

0.596 
(0.045) ( 

0.275 
(0.036) ( 

0.642 
(0.041) ( 

0.250 
(0.040) ( 

0.568 
(0.048) ( 

0.205 
(0.049) ( 

0 .452 
(0.049) ( 

0.374 
(0.084) ( 

0 .058 
(0.032) ( 
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TABLE 4.10B 

Relat ive Conservatism of Bayesian Fixed Sample Size MUAS 

*2 ! H^: p=.01 v s . H5: p=.05 

Table e n t r i e s : mean and standard dev iat ion ( i n parentheses) 
of the r a t i o RC=(nominal risk-observed risk)/nominal r i s k 

Distribution 

J-100 Unimodal Uniform 
Test p 
2 . IF .01 

.05 

2.2F .01 

.05 

2.3F .01 

.05 

2.4F .01 

.05 

2.5F .01 

.05 

2.6F .01 

.05 

Low High Low High Low High 

0.435 
(0 .028) 

0.440 
(0.000) 

0.357 
(0 .011) 

0.437 
(0.000) 

0.343 
(0 .010) 

0.525 
(0 .000) 

0.323 
(0.008) 

0.631 
(0 .000) 

0.289 
(0 .000) 

0.743 
(0 .012) 

0.430 
(0 .019) 

0.301 
(0 .041) 

0 . 3 U 
0.036) 

0.440 
0.000) 

0.232 
0.029) 

0.437 
0.000) 

0.247 
0.027) 

0.512 
0.013) 

0.252 
0.025) 

0.610 
0.015) 

0.250 
0.019) 

0.530 
0.042) 

0.333 
0.047) 

0.080 
0.043) 

0.163 
0.043 

0.440 
0.000 

0.220 
0.030 

0.437 
0.000 

0.205 
0.032 

0.512 
0.013 

0 .221 
0.029 

0.599 
0.019 

0 .211 
0.027 

0.612 
0.034 

0.410 
0.027 

0.088 
0.043 

0.183 
0.042 

0.440 
0.000 

0.214 
0 .031 

0.394 
0.024 

0.212 
0 .031 

0.448 
0 .031 

0.205 
0 .031 

0.523 
0.034 

0.182 
0 .032 

0.480 
0.046 

0.294 
0.055 

0.022 
0.043 

0.242 
0.039 

0.387 
0 .031 

0.257 
0.027 

0.366 
0 .031 

0.254 
0.026 

0.410 
0.038 

0.244 
0.026 

0.501 
0.037 

0.250 
0.019 

0.448 
0.049 

0.410 
0.027 

0.123 
0.043 

0.054 
0.046 

0.369 
0.035 

0.183 
0.034 

0.352 
0.034 

0.205 
0.032 

0.423 
0.036 

0.213 
0.030 

0.447 
0.044 

0.192 
0.030 

0.407 
0 .051 

0.294 
0.055 

0.119 
0.043 
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TABLE 4.11 

Relative Efficiency of Classical Sequential MUAS 
H :̂ p=.01 vs. H2: p=.05 

Table entries: mean (AVG) and maximum (MAX) of the ratio 
RBa(n*-ASNT)/n*, where n* i s the optimal fixed sample 
s ize and ASN is the average sample size, and the 
proportion of truncated decisions (PTD), based on 2500 
replications on the control distributions 

Test 

p«. 01 

p=.05 

MAX 

AVG 

PTD 

MAX 

AVG 

PTD 

1.13 
.610 

.440 

.098 

.984 

.570 

.040 

1.2S 
.590 

.433 

.157 

.985 

.522 

.070 

1.3S 

.625 

.467 

.132 

.975 

.421 

.090 

1.4S 
.542 

.381 

.076 

.987 

.594 

.030 

1.5S 

.495 

.355 

.114 

.981 

.542 

.060 

1.6S 
.532 

.394 

.098 

.979 

.500 

.078 
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TABLE 4.12 

Relative Efficiency of Bayesian Sequential MUAS 

Rj^ p=.01 vs. H2: p=.05 

Table entries: mean (AVG) and maximum (MAX) of the ratio 

RE=(n#-ASN")/n#, where n* is the optimal fixed sample 

size and ASN is the average sample size, and the 

proportion of truncated decisions (PTD), based on 2500 

replications on the control distributions 

Test 

2.13 2.23 2.3S 

P=. 01 

p*.05 

MAX 

AVG 

PTD 

MAX 

AVG 

PTD 

2.13 

.232 

__+ 

.235 

.989 

.674 

.041 

2.2S 

.425 

.300 

.127 

.983 

.600 

.041 

2.3S 

.482 

.348 

.117 

.982 

.563 

.050 

2.43 

.539 

.402 

.102 

.980 

.510 

.065 

2.53 

.602 

.466 

.084 

.977 

.455 

.084 

2.63 

.676 

.618 

.082 

.941 

+ 

.144 

"^efficiency measures omitted (see text) 
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TABLE 4.13 

Relative Conservatism of Classical MUAS: Degenerate Distributions 

H1: pa.01 vs. H2: p=.05 

Table entr ies: mean and standard deviation ( i n parentheses) 
of the ratio RC=( nominal risk-observed risk) /nominal risk 
for sequential (S) and fixed sample size (F) t e s t s 

Distribution 
.3 .5 .8 

Test p 3 F 3 F 3 F 
1.1 .01 

.05 

1.2 .01 

.05 

1.3 .01 

.05 

1.4 .01 

.05 

1.5 .01 

.05 

1.6 .01 

.05 

1.000 
0.000) 

1.000 
0.000) 

1.000 
0.000) 

0.985 
0.015) 

1.000 
0.000) 

0.960 
0.020) 

0.921 
0.046) 

1.000 
0.000) 

0.892 
0.048) 

0.968 
0.023) 

0.939 
0.043) 

0.969 
0.018) 

1.000 
'0.000) 

1.000 
(0.000) 

1.000 
(0.000) 

1.000 
(0.000) 

1.000 
(0.000) 

0.960 
(0.023) 

0.917 
(0.048) 

1.000 
(0.000) 

0.893^ 
(0.048) 

0.980 
(0.020) 

0.943v 
(0.041) 

0.974x 
(0.019) 

0.699 
0.122) 

0.877 
0.061) 

0.479 
0.149) 

0.831 
0.050) 

0.483 
0.181) 

0.820 
0.042) 

0.499 
0.113) 

0.907 
0.053) 

0.197 
0.127) 

0.886 
0.043) 

0.392 
0.133) 

0.823 
0.042) 

0.683 
(0.129) 

0.845 
(0.077) 

0.534x 
(0.139) 

0.798 
(0.063) 

0.585 
(0.156) 

0.775 
(0.054) 

0.473 
(0.119) 

0.880 
(0.069) 

0.210 
(0.125) 

0.857 
(0.054) 

0.368 
(0.132) 

0.790 
(0.052) 

0.548 
0.149) 

0.632 
0.105) 

0.436 
0.154) 

0.616 
0.075) 

0.612 
0.157) 

0.319 
0.077) 

0.262 
0.135) 

0.722 
0.092) 

0.306 
0.119) 

0.497 
0.088) 

0.361 
0.136) 

0.314 
0.079) 

0.472 
(0.165) 

0.652 
(0.115) 

0.491 
(0.145) 

0.534 
(0.095) 

0.526 
(0.166) 

0.246 
(0.094) 

0.445 
(0.122) 

0.681 
(0.112) 

0.551 
(0.096) 

0.307 
(0.115) 

0.569x 
(0.110) 

0.199 
(0.096) 
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TABLB 4.14 

Relative Conservatism of Bayesian MUAS: Degenerate Distributions 
H, : p=.01 vs. H2: p=,05 

Table entries: mean and standard deviation (in parentheses) 
of the ratio RC=(nominal risk-observed risk)/nominal risk 
for both sequential (S) and fixed sample size (F) teats 

Distribution 

•3 £ .8 
Teat p S F S F SI F 

2.1 .01 

.05 

2.2 .01 

.05 

2.3 .01 

.05 

2.4 .01 

.05 

2.5 .01 

.05 

2.6 .01 

.05 

0.098 
0.046) 

0.793 
0.000) 

0.383 
0.019) 

0.742 
0.000) 

0.38O 
0.018) 

0.767 
0.015) 

0.365 
0.018) 

0.788 
0.014) 

0.361 
0.000) 
* 
0.784 
0.022) 

0.562 
0.000) 

0.297 
0.032) 

0.079 
(0.045) 

0.440 
(0.000) 

0.326 
(0.018) 

0.437 
(0.000) 

0.323 
(0.015) 

0.525 
(0.000) 

0.307 
(0.014) 

0.621 
(0.011) 

0.289 
(0.000) 

0.694 
(0.023) 

0.449 
(0.000) 

0.456 
(0.038) 

-0.372 
(0.056) 

0.786 
(0.034) 

0.072 
(0.047) 

0.683 
(0.037) 

0.092 
(0.049) 

0.737 
(0.031) 

0.072 
(0.053) 

0.73O 
(0.033) 

0.112 
(0.053) 

0.682 
(0.035) 

0.191 
(0.111) 

0.352 
(0.032) 

•0.213 
0.052) 

0.387 
0.O31) 

0.O83 
0.O41) 

0.394 
0.O24) 

0.095 
0.O41) 

0.474 
0.O25) 

0.O79 
0.043) 

0.523 
0.O34) 

0.114 
0.O40) 

0.587 
0.O37) 

0.158 
0.O74) 

0.406 
0.O39) 

-0.220 
(0.054) 

0.604 
(0.070) 

^0.070 
(0.050) 

0.447 
(0.074) 

0.157 
(0.047) 

0.397x 
(0.073) 

0.145 
(0.052) 

0.267 
(0.071) 

0.187 
(0.051) 

0.157 
(0.060) 

-0.332 
(0.183) 

0.169 
(0.032) 

-0.268 
(0.O53) 

0,369N 
(0.O35) 

0.183 
(0.O34) 

0.239 
(0.O52) 

0.2O5 
(0.O32) 

0.2O6 
(0.O62) 

0.181 
(0.O34) 

0.122 
(0.O71) 

0.163 
(0.O35) 

0.O62 
(0.O69) 

-0.173 
(0.1O6) 

0.266 
(0.042) 
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TABLE 4.15 

Empirical and Theoretical Power Functions of Test 1.1 

/3(P) ASN 

^st p (1) (2) (?) (1) (2) (3) 

1.1? .005 0.000 0.000 0.002 182 182 182 

.01 0.000 0.016 0.037 182 182 182 

.02 0.116 0.274 0.301 182 182 182 

.025 0.534 0.478 0.479 182 182 182 

.03 0.794 0.700 0.640 182 182 182 

.04 1.000 0.926 0.856 182 182 182 

.05 1.000 0.986 0.952 182 182 182 

.06 1.000 0.998 0.986 182 182 182 

.07 0.998 0.996 182 182 

1.1S .005 0.000 0.000 0.003 82 88 88 

.01 0.000 0.020 0.039 102 113 105 

.02 0.118 0.276 0.287 166 137 124 

.025 0.532 0.462 0.454 173 134 123 

.03 0.794 0.692 0.607 159 131 117 

.04 1.000 0.914 0.824 113 99 100 

.05 l.OOO 0.980 0.930 72 75 82 

.06 1.000 0.998 0.973 53 61 67 

.07 0.998 0.990 — 49 55 

Legend: (l) low J relative error distribution 
(2) uniform relative error distribution 
(3) theoretical results, i.e. assuming a binomial 

error distribution; for ASN, the bound given 
by (33) in section 3.2 is used 

Note: empirical results are based on 500 replications; stan­
dard deviations do not exceed .0225 and are quite low 
in the tails; results for the low J distribution for 
p=.07 were not obtained 
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FIGURE 4.1 A 

Low Variance J Distribution 
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FIGURE 4. IB 

Low Variance J Distribution 
pa.05 

Relative 
Frequency 

.60 -
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PXGUHS 4.2A 

High Variance J Distribution 
P«. 01 
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FIGURE 4.2B 
High Variance J Distribution 

P-.05 
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Frequency 
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PIGURB 4.3A 

Low Variance J-100 Distribution 
pa. 01 
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Frequency 
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FZGUSB 4.3B 

Low Variance J-100 Dlatribubion 
P-.05 

Relative 
Frequency 
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FlffCBB 4.4A 
High Variance J-100 Distribution 
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FIGURE 4.4B 

High Variance J-100 Distribution 
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FIGURE 4.5A 

Low Variance Unimodal Distribution 
pa. 01 
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.60 -

Summary statistics: 
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FIGURE 4.5B 

Low Variance Unimodal Distribution 
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FIGURE 4.6A 

High Variance Unimodal Distribution 
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FIGURE 4.6B 

High Variance Unimodal Distribution 
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FIGURE 4.7B 

Uniform Distribution 
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FIGURE 4.8A 

Relative Conservatism of Classical MUAS: Test L I S 
CXa.040//3=.065 

Graph: mean (AVG) and 95# confidence l imits (UCL,LCL) for 
the ratio RCa(nominal risk-observed risk)/nominal risk 

1.0 

0.5 

0.0 

p«. 01 

UCL 

AVQ 

LCL 

1L 1H 2L 2H 3L 3H 4 
Distribution* 

1.0 

0.5 

0.0 

P-.05 

1L 1H 2L 2H 3L 3H 4 
Distribution* 

•legend: 1=J, 2=J-100, 3»unimodal, 4=uniform 
Lalow variance, Hahigh variance 
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FIGURE 4.8B 

Relative Conservatism of Classical MUAS: Test 1.1F 

Ov». 038/ (3 =.052 

Graph: mean (AVG) and 955* confidence l imits (UCL,LCL) for 
the ratio RCa(nominal risk-observed risk)/nominal risk 
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•legend: 1=J, 2=»J-100, 3=»unimodal, 4=uniform 
Lalow variance, Hahigh variance 
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FIGURE 4.9A 

R e l a t i v e Conservatism of C l a s s i c a l MUAS: Test 1.2S 

<Xa.046//3».130 

Graph: mean (AVG) and 95£ confidence l i m i t s (UCL,LCL) for 
the r a t i o RCa(nominal r iak-observed r i sk ) /nomina l r i s k 
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• legend: l a J , 2»J-100, 3»unimodal, 4=uniform 
Lalow v a r i a n c e , Hahigh v a r i a n c e 
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FIGURE 4.9B 

Relative Conservatism of Classical MUAS: Test 1.2F 
<*=. 047/ /3 =.099 

Graph: mean (AVG) and 959» confidence l imits (UCL,LCL) for 
the ratio RCa(nominal risk-observed risk) /nominal risk 
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•legend: 1»J, 2aJ-100, 3=»unimodal, 4=uniform 
Lalow variance, Hahigh variance 
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FIGURE 4.10A 

Relative Conservatism of Class ical MUAS: Test 1.33 
ex.. 031//3=. 200 

Graph: mean (AVG) and 95$ confidence l imi t s (UCL,LCL) for 
the r a t i o RC»(nominal risk-observed r isk) /nominal r i sk 
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•legend: l a J, 2a J-100, 3»unimodal, 4=uniform 
Lalow variance, Hahigh variance 
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FIGURE 4.10B 

Relative Conservatism of Classical MUAS: Test 1.3F 
C<=.034//3=.151 

Graph: mean (AVG) and 95# confidence limits (UCL,LCL) for 
the ratio RC«( nominal risk-observed risk)/nominal risk 
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••legend: 1=J, 2aJ-100, 3aunimodal, 4=uniform 
Lalow variance, Hahigh variance 
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FIGURE 4.11A 

Relative Conservatism of Classical MUAS: Test 1.4S 
vx=.076//3=.O65 

Graph: mean (AVG) and 959» confidence l imits (UCL,LCL) for 
the ratio RCa(nominal risk-observed risk)/nominal risk 
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•legend: 1=J, 2=J-100, 3=unimodal, 4=uniform 
Lalow variance, Hahigh variance 
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FIGURE 4.11B 

Relative Conservatism of Classical MUAS: Test 1.4F 
©v=.O72//3=.05O 

Graph: mean (AVG) and 95# confidence l imits (UCL,LCL) for 
the ratio RCa(nominal risk-observed risk)/nominal risk 
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•legend: la J, 2=J-100, 3»unimodal, 4=uniform 
Lalow variance, Hahigh variance 
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FIGURE 4.12A 

Relative Conservatism of Classical MUAS: Test 1.53 
<x».092//3=.127 

Graph: mean (AVG) and 95# confidence l imits (UCL,LCL) for 
the ratio RCa(nominal risk-observed risk) /nominal risk 
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•legend: la J, 2a J-100, 3*unimodal, 4=uniform 
Lalow variance, Hahigh variance 
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FIGURE 4.12B 

Relative Conservatism of Classical MUAS: Test 1.5F 
Ov=.O94//3=.098 

Graph: mean (AVG) and 959* confidence limits (UCL,LCL) f o r 
the ratio RCa( nominal risk-observed risk) /nominal risk 
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•legend: l a J, 2a J-100, 3=»unlmodal, 4=uniform 
Lalow variance, Hahigh variance 
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FIGURE 4.13A 

Relative Conservatism of Classical MUAS: Test 1.6S 
tf = .066//3».192 

Graph: mean (AVG) and 959» confidence l imits (UCL,LCL) for 
the ratio RCa( nominal risk-observed risk) /nominal risk 
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•legend: 1=J, 2=J-100, 39>unimodal, 4=uniform 

Lalow variance, Hahigh variance 
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FIGURE 4.13B 

Relative Conservatism of Classical MUAS: Test 1.6F 
CX=.070//3a.l52 

Graph: mean (AVG) and 959* confidence l imits (UCL,LCL) for 
the ratio RC»(nominal risk-observed risk)/nominal risk 
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•legend: la J, 2a J-100, 3*unimodal, 4=uniform 
L-low variance, Hahigh variance 
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FIGURE 4.14A 

Relative Conservatism of Bayesian MUAS: Test 2.IS 
g( .01)=.4/g( .05)=.6 

Graph: mean (AVG) and 959* confidence limits (UCL,LCL) for 
the ratio RC»(nominal risk-observed risk)/nominal risk 
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•legend: la J, 2=J-100, 3»unimodal, 4=uniform 
Lalow variance, Hahigh variance 
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FIGURE 4.14B 

Relative Conservatism of Bayesian MUAS: Test 2.IF 

g(.01)=.4/g(.05)=.6 

Graph: mean (AVG) and 959* confidence limits (UCL,LCL) for 

the ratio RCa(nominal risk-observed risk)/nominal risk 
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Lalow variance, Hahigh variance 
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'FIGURE 4.15A 

Relative Conservatism of Bayesian MUAS: Test 2.2S 
g( .01)a.5/g( .05)=.5 

Graph: mean (AVG) and 959* confidence l imits (UCL,LCL) for 
the rat io RC»(nominal risk-observed riak) /nominal risk 

1.0 

0.5 

0 .0 

pa.. 01 

' • a > a * aaa- a , | « . a » mm *•> f 

*** UCL 
AVG 

1 1 1H 21 2H 3 1 3H ** . 4 I 0 1 

Distribution* 

1.0 

0.5 

0 . 0 

P-.05 

11 1H 2L 2H 3 L 3H 4 
Distribution* 

•legend: la J, 2a J-100, 3»unimodal, 4=uniform 
Lalow variance, Hahigh variance 
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FIGURE 4.15B 

Relative Conservatism of Bayesian MUAS: Test 2.2F 
g(.0l)=.5/g(.O5)=.5 

Graph: mean (AVG) and 959* confidence limita (UCL,LCL) for 
the ratio RC»(nominal risk-observed risk) /nominal risk 
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•legend: 1=J, 2=J-100, 3»unimodal, 4=unifora 
Lalow variance, H=»high variance 
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FIGURE 4.16A 

Re la t ive Conservatism of Bayesian MUAS: Test 2.33 

g ( . 0 l ) a . 6 / g ( . 0 5 ) = . 4 

Graph: mean (AVG) and 959* confidence l i m i t s (UCL,LCL) f o r 
the rat io RCa(nominal risk-observed risk)/nominal r isk 
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Lalow variance, Hahigh variance 
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FIGURE 4.16B 

Relative Conservatism of Bayesian MUAS: Test 2.3F 
g( .0 l )a .6 /g( .05)=.4 

Graph: mean (AVG) and 959* confidence l imits (UCL,LCL) for 
the ratio RCa(nominal risk-observed risk)/nominal risk 
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•legend: la J, 2a J-100, 3"unimodal, 4=uniform 

Lalow variance, Hahigh variance 
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FIGURE 4.17A 

Relative Conservatism of Bayesian MUAS: Test 2.4S 
g( .01)=.7/g( .05)=.3 

Graph: mean (AVG) and 959* confidence l imits (UCL,LCL) for 
the ratio RCa(nominal risk-observed risk) /nominal risk 
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•legend: la J, 2=J-100, 3aunimodal, 4=uniform 
Lalow variance, Hahigh variance 
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FIGURE 4.17B 

Relative Conservatism of Bayesian MUAS: Test 2.4F 
g( .0 l )= .7 /g( .05)= .3 

Graph: mean (AVG) and 959* confidence l imits (UCL,LCL) .for 
the ratio RCa(nominal risk-observed risk)/nominal risk 
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•legend: 1=J, 2aJ-100, 3»unimodal, 4=uniform 
Lalow variance, Rahigh variance 
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FIGURE 4.18A 

Relative Conservatism of Bayesian MUAS: Test 2.53 
g( .0 l )= .8 /g( .05)= .2 

Graph: mean (AVG) and 959* confidence l imits (UCL,LCL) for 
the ratio RC»(nominal risk-observed risk) /nominal risk 
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•legend: la J, 2a J-100, 3»unimodal, 4=unifonn 
L«low variance, Hahigh variance 
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FIGURE 4.18B 

Relative Conservatism of Bayesian MUAS: Test 2.5F 

g(.0l)=.8/g(.05)=.2 

Graph: mean (AVG) and 959* confidence limits (UCL,LCL) for 

the ratio RCa(nominal risk-observed risk)/nominal risk 
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*legend: la J, 2=J-100, 3s»unimodal, 4=uniform 
Lalow variance, Rahigh variance 
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FIGURE 4.19A 

Relative Conservatism of Bayesian MUAS: Test 2.6S 
g( .01)a.9/g( .O5)=. l 

Graph: mean (AVG) and 959* confidence l imits (UCL,LCL) for 
the ratio RCa( nominal risk-observed risk) /nominal risk 

1.0 

0.0 

P«. 01 

11 1H 2L 2H 31 3H 4 
Distribution* 

1.0 

0.5 

0.0 

p*.05 

3BT- 4 LCL 
Distribution* 

•legend: 1=J, 2aJ-100, 3»unimodal, 4=uniform 
Lalow variance, Rahigh variance 
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FIGURE 4.19B 

Relative Conservatism-of Bayesian MUAS: Test 2.6F 
g ( .01)= .9 /g ( .05 )a . l 

Graph: mean (AVG) and 959* confidence l imits (UCL,LCL) for 
the rat io RCa(nominal riak-observed risk)/nominal risk 
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FIGURE 4.20 

Empirical Versus Theoretical Power Functions for Test 1.1F 
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APPENDIX A 

STATISTICAL FREQUENCY AND DENSITY FUNCTIONS 

1. Binomial Distribution. The binomial(n,p) frequency 

function is given by 

fa(xjp)-g)px(l^p)n-x x=0,l n 
where 0 < p < l and n i s a positive integer. If X. ( i = l , . . . , n ) 
are independent, identically distributed binomial(l,p) random 
variables (more commonly called Bernoulli random variables) , 
then S s ^ J ^ X i*wbinomial(n,p) with E(S)=np and Var(S)=np(l-p). 

2. Pois8on Distribution. The Poiason(q) frequency func­
t ion i s given by 

f(x;q)«e"<1qx/3c! x=»0, l ,2 , . . . 
where q > 0 . E(X)=Var(2)=q. - For p small and np moderate, 
the binomial(n,p) may be approximated by the Poisson(np). 

3 . Normal Distribution. The normal(a,b) density func­
t ion i s given by 

f (x;a,b 2 )=( /2Tb)- 1 e 3 cp{-(x-a) 2 /2b 2 } 
where b > 0 . E(X)=a and Var(X)=b2. The noroal(0, l ) d i s t r i ­
bution is called the standard normal distribution. I ts 
(cumulative) distribution function is denoted by ] § ( • ) . 

4. Gamma Distribution. The gamma(r,s) density function 
i s given by 

f ( x ; r , s ) = s r x r - 1 e - 8 x / P ( r ) x > 0 
where r , s > 0 and P ( * ) i s the Euler gamma function. E(X)=r/a 
and Var(X)=r/a . The gamma(l,s) i s called the exponential(s) 
distribution, with density given by 

f (x;a)=se" s x x > 0 
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APPENDIX B 

TABLES OF THE CUMULATIVE POISSON DISTRIBUTION 

Pq\x^x3=F(x;q) = S = 0 B - V A ! 

q=0.1(0.1)20.0 
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12 
13 
14 
15 

- 0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 

x- 0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 

QaA.10 4.20 A.30 A.AO A.50 A.60 A.70 A.SO A.qp 5.00 
1.00 
.983 
.915 
.776 
.586 
.391 
.231 
.121 
.057 
.024 
.010 
.003 
.001 
.000 

1.00 
.985 
.922 
.790 
.605 
.410 
.247 
.133 
.064 
.028 
.011 
.004 
.001 
.000 

1.00 
.986 
.928 
.003 
.623 
.430 
,263 
.144 
.071 
.032 
.013 
.005 
.002 
.001 
.000 

1.00 
.968 
.934 
.815 
.641 
.449 
.280 
.156 
.079 
.036 
.015 
.006 
.002 
.001 
.000 

1.00 
.989 
.939 
.826 
.656 
.468 
.297 
.169 
.087 
.040 
.017 
.007 
.002 
.001 
.000 

1.00 
.990 
.944 
.837 
.674 
.487 
.314 
.182 
.095 
.045 
.020 
.008 
.003 
.001 
.000 

1.00 
.991 
.948 
.348 
.690 
.505 
.332 
.195 
.104 
.050 
.022 
.009 
.003 
.001 
.000 

1.00 
.992 
.952 
.857 
.706 
.524 
.349 
.209 
.113 
.056 
.025 
.010 
.004 
.001 
.000 

1.00 
.993 
.956 
.367 
.721 
.542 
.366 
.223 
.123 
.062 
.028 
.012 
.005 
.002 
.001 
.000 

1.00 
.993 
.960 
.375 
.736 
.560 
.384 
.238 
.133 
.068 
.032 
.014 
.005 
.002 
.001 
.OOO 

<l«7ilQ 3i2P ? I ? 0 ?t40 7,?Q f,6Q 5,70 -3,80 f.qQ $,W 
1.00 
.994 
.963 
.884 
.749 
.577 
.402 
.253 
.144 
.075 
.036 
.016 
.006 
.002 
.001 
.000 

1.00 
.994 
.966 
.891 
.762 
.594 
.419 
.268 
.155 
.082 
.040 
.018 
.007 
.003 
.001 
.000 

1.00 
.995 
.969 
.898 
.775 
.610 
.437 
.283 
.167 
.089 
.044 
.020 
.008 
.003 
.001 
.000 

1.00 
.995 
.971 
.905 
.787 
.627 
.454 
.298 
.178 
.097 
.049 
.023 
.010 
.004 
.001 
.000 

1.00 
.996 
.973 
.912 
.798 
.642 
.471 
.314 
.191 
.106 
.054 
.025 
.011 
.004 
.002 
.001 
.000 

1.00 
.996 
.976 
.918 
.809 
.658 
.488 
.330 
.203 
.114 
.059 
.028 
.012 
.005 
.002 
.001 
.000 

1.00 
.997 
.978 
.923 
.820 
.673 
.505 
.346 
.216 
.123 
.065 
.031 
.014 
.006 
.002 
.001 
.000 

1.00 
.997 
.979 
.928 
.830 
.687 
.522 
.362 
.229 
.133 
.071 
.035 
.016 
.007 
.003 
.001 
.000 

1.00 
.997 
.981 
.933 
.840 
.701 
.538 
.378 
.242 
.143 
.077 
.039 
.018 
.008 
.003 
.001 
.000 

1.00 
.998 
.983 
.938 
.849 
.715 
.554 
.394 
.256 
.153 
.084 
.043 
.020 
.009 
.004 
.001 
.001 
.OOO 

qa6 .10 6.20 6.^0 6.40 6.SO 6.60 6.70 6.SO 6.90 7.0O 
1.00 
.998 
.984 
.942 
.857 
.728 
.570 
.410 
.270 
.163 
.091 
.047 
.022 
.010 
.004 
.002 
.001 
.000 

1.00 
.998 
.985 
.946 
.866 
.741 
.586 
.426 
.284 
.174 
.098 
.051 
.025 
.011 
.005 
.002 
.001 
.000 

1.00 
.998 
.987 
.950 
.874 
.753 
.601 
.442 
.298 
.185 
.106 
.056 
.028 
.013 
.005 
.002 
.001 
.000 

1.00 
.998 
.988 
.954 
.881 
.765 
.616 
.458 
.313 
.197 
.114 
.061 
.031 
.014 
.006 
.003 
.001 
.000 

l.OO 
.998 
.989 
.957 
.888 
.776 
.631 
.473 
.327 
.208 
.123 
.067 
.034 
.016 
.007 
.003 
.001 
.000 

1.00 
.999 
.990 
.960 
.895 
.787 
.645 
.489 
.342 
.220 
.131 
.073 
.037 
.018 
.008 
.003 
.001 
.001 
.000 

1.00 1.00 1.00 1.00 
.999 
.991 
.963 
.901 
.798 
.659 
.505 
.357 
.233 
.140 
.079 
.041 
.020 
.009 
.004 
.002 
.001 
.000 

.999 

.991 

.966 

.907 

.608 

.673 

.520 

.372 

.245 

.150 

.085 

.045 

.022 

.010 

.004 

.002 

.001 

.000 

.999 

.992 

.968 

.913 

.818 

.666 

.535 

.386 

.258 

.160 

.092 

.049 

.024 

.011 

.005 

.002 

.001 

.000 

.999 

.993 

.970 

.918 

.827 

.699 

.550 

.401 

.271 

.170 

.099 

.053 

.027 

.013 

.006 

.002 

.001 

.OOO 



www.manaraa.com

174 

Xa 0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

1 0 
U 
1 2 
1 3 
1 4 
1 5 
1 6 
1 7 
1 8 
1 9 
2 0 

q-7,19 
1 .00 
. 999 
.993 
. 973 
. 923 
.836 
. 7 1 2 
. 565 
.416 
. 284 
.180 
.106 
. 0 5 8 
. 030 
. 0 1 4 
.006 
. 003 
. 0 0 1 
.OOO 

7.20 
1.00 
.999 
.994 
.975 
.928 
.844 
.724 
.580 
.431 
.297 
.190 
.113 
.063 
.033 
.016 
.007 
.003 
.001 
.000 

7.30 
1.00 
.999 
.994 
.976 
.933 
.853 
.736 
.594 
.446 
.311 
.201 
.121 
.068 
.036 
.018 
.008 
.004 
.001 
.001 
.000 

7.A0 
1 .00 
.999 
.995 
. 978 
.937 
.860 
. 747 
. 6 0 8 
. 4 6 1 
.324 
.212 
. 129 
.074 
.039 
.020 
. 0 0 9 
. 004 
. 0 0 2 
. 0 0 1 
.000 

7.«50 
1 .00 
.999 
.996 
.980 
. 9 4 1 
. 868 
. 759 
. 6 2 2 
. 475 
. 3 3 8 
.224 
. 138 
.079 
.043 
.022 
. 010 
.005 
.002 
. 0 0 1 
.000 

7 .60 
1.00 
.999 
.996 
.981 
.945 
.875 
.769 
.635 
.490 
.352 
.235 
.146 
.035 
.046 
.024 
. 011 
.005 
.002 
.001 
.000 

7.70 
1.00 
1.00 
.996 
.983 
.948 
.882 
.780 
.649 
.504 
.366 
.247 
.155 
.091 
.050 
.026 
.013 
.006 
.003 
.001 
.000 

7 .80 
1.0(5 
1 .00 
.996 
.984 
.952 
.888 
.790 
.662 
.519 
.380 
.259 
.165 
.098 
.055 
.029 
.014 
.007 
.003 
. 0 0 1 
.000 

7 .90 
1 .00 
1 .00 
.997 
.985 
.955 
.894 
. 799 
.674 
.533 
.393 
. 2 7 1 
.174 
.105 
.059 
. 0 3 1 
.016 
.007 
.003 
. 0 0 1 
. 0 0 1 
.000 

S T99 
1.66 
1.00 
.997 
.986 
.958 
.900 
.809 
.687 
.547 
.407 
.283 
.184 
.112 
.064 
.034 
.017 
.008 
.004 
.002 
.001 
.000 

qaa.io a.20 a.-so a.AO a.go a.6o a.70 a.ao a.go 9.00 
Xa0-1 

2 
3 
4 
5 
6 
7 
8 
9 

1 0 
1 1 
1 2 
1 3 
1 4 
1 5 
1 6 
1 7 
1 8 
1 9 
20 
2 1 

1 . 0 0 
. 997 
.987 
. 960 
.906 
. 8 1 8 
.699 
. 5 6 1 
. 4 2 1 
.296 
.194 
.119 
. 0 6 9 
.037 
.019 
. 009 
.004 
. 0 0 2 
. 0 0 1 
.000 

1.00 
.997 
.988 
.963 
.911 
.826 
.710 
.575 
.435 
.308 
.204 
.127 
.074 
.040 
.021 
.010 
.005 
.002 
.001 
.000 

1.00 
.998 
.989 
.965 
.916 
.835 
.722 
.588 
.449 
.321 
.215 
.135 
.079 
.044 
.023 
.011 
.005 
.002 
.001 
.000 

1 . 0 0 
. 9 9 8 
.990 
. 968 
. 9 2 1 
. 843 
.733 
. 6 0 1 
.463 
.334 
.226 
.143 
. 085 
. 048 
.025 
. 013 
.006 
. 0 0 3 
. 0 0 1 
.000 

1 .00 
.998 
. 9 9 1 
.970 
.926 
.850 
.744 
.614 
.477 
.347 
.237 
. 1 5 1 
. 0 9 1 
. 051 
.027 
.014 
.007 
.003 
. 001 
. 0 0 1 
.000 

1.00 
.998 
.991 
.972 
.930 
.858 
.754 
.627 
.491 
.360 
.248 
.160 
.097 
.055 
.030 
.015 
.007 
.003 
.001 
.001 
.000 

1.00 
.998 
.992 
.974 
.934 
.865 
.765 
.640 
.504 
.373 
.259 
.169 
.103 
.060 
.033 
.017 
.008 
.004 
.002 
.001 
.000 

1 . 0 0 
.999 
.993 
.976 
.938 
.872 
.774 
. 6 5 2 
.518 
.386 
. 2 7 1 
.178 
.110 
.064 
.035 
. 0 1 8 
.009 
. 004 
.002 
. 0 0 1 
.000 

1 . 0 0 
.999 
.993 
.977 
.942 
. 878 
.784 
.664 
. 5 3 1 
.399 
. 2 8 2 
.137 
. 117 
.069 
.038 
.020 
.010 
.005 
.002 
. 0 0 1 
.000 

1 .00 
.999 
.994 
.979 
.945 
.884 
.793 
.676 
.544 
.413 
.294 
.197 
.124 
.074 
.041 
.022 
.011 
.005 
.002 
.001 
.000 
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x-0-1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
U 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 

x-0-2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 

oa9.1Q 9.20 9.-50 9.40 q.jQ 9.60 9.70 9 
IToo l . o o i . o o l . o o i . o o l .oo 1.66 i 1.00 
.999 
.994 
.980 
.948 
.890 
.802 
.668 
.557 
.426 
.306 
.207 
.132 
.079 
.045 
.024 
.012 
.006 
.003 
.001 
.001 
.000 

1.00 
.999 
.995 
.982 
.951 
.896 
.811 
.699 
.570 
.439 
.318 
.217 
.139 
.084 
.048 
.026 
.013 
.007 
.003 
.001 
.001 
.000 

1.00 
.999 
.995 
.983 
.954 
.901 
.819 
.710 
.583 
.452 
.330 
.227 
.147 
.090 
.052 
.028 
.015 
.007 
.003 
.002 
.001 
.000 

1.00 
.999 
.995 
.984 
.957 
.907 
.827 
.721 
.596 
.465 
.342 
.237 
.155 
.096 
.056 
.031 
.016 
.008 
.004 
.002 
.001 
.000 

.80 

.999 

.996 

.985 

.960 

.911 

.835 

.731 

.608 

.478 

.355 

.248 

.164 

.102 

.060 

.033 

.018 

.009 

.004 

.002 

.001 

.000 

7015 
.999 
.996 
.986 
.962 
.916 
.843 
.742 
.620 
.491 
.367 
.259 
.172 
.108 
.064 
.036 
.019 
.010 
.005 
.002 
.001 
.000 

7J5Q 
.999 
•996 
.987 
.965 
.921 
.850 
.752 
.632 
.504 
.379 
.270 
.181 
.115 
.069 
.039 
.021 
.011 
.005 
.002 
.001 
.000 

.999 

.997 

.988 

.967 

.925 

.857 

.761 

.644 

.517 

.392 

.281 

.190 

.121 

.073 

.042 

.023 

.012 

.006 

.003 

.001 

.001 

.000 

.999 

.997 

.989 

.969 

.929 

.863 

.771 

.656 

.529 

.404 

.292 

.199 

.128 

.078 

.045 

.025 

.013 

.007 

.003 

.001 

.001 

.000 

JBLP. 
1.00 
1.00 
.997 
.990 
.971 
.933 
.870 
.780 
.667 
.542 
.417 
.303 
.208 
.136 
.083 
.049 
.027 
.014 
.007 
.003 
.002 
.001 
.000 

q-;ott ,o.g ,0t? to,* 
1.00 
.997 
.990 
.973 
.937 
.876 
.789 
.678 
.555 
.429 
.315 
.21a 
.143 
.089 
.052 
.029 
.016 
.008 
.004 
.002 
.001 
.000 

1.00 
.998 
.991 
.974 
.940 
.882 
.797 
.689 
.567 
.442 
.326 
.228 
.151 
.094 
.056 
.032 
.017 
.009 
.004 
.002 
.001 
.000 

1.00 
.998 
.992 
.976 
.943 
.888 
.806 
.700 
.579 
.454 
.338 
.238 
.158 
.100 
.060 
.034 
.019 
.010 
.005 
.002 
.001 
.000 

1.00 
.998 
.992 
.977 
.947 
.893 
.814 
.710 
.591 
.467 
.350 
.248 
.166 
.106 
.064 
.037 
.020 
.011 
.005 
.003 
.001 
.001 
.000 

M M M BS M 
.998 
.993 
.979 
.950 
.898 
.821 
.721 
.603 
.479 
.361 
.258 
.175 
.112 
.068 
.040 
.022 
.012 
.006 
.003 
.001 
.001 
.000 

^00 
.998 
.993 
.980 
.952 
.903 
.829 
.731 
.615 
.492 
.373 
.268 
.183 
.118 
.073 
.043 
.024 
.013 
.006 
.003 
.001 
.001 
.000 

.998 

.994 

.982 

.955 

.908 

.836 

.740 

.626 

.504 

.385 

.279 

.192 

.125 

.077 

.046 

.026 

.014 

.007 

.003 

.002 

.001 

.000 

0 . 8 
TOTT 

.999 

.994 

.983 

.958 

.913 

.843 

.750 

.637 

.516 

.397 

.290 

.201 

.132 

.082 

.049 

.028 

.015 

.008 

.004 

.002 

.001 

.000 

.999 

.995 

.984 

.960 

.917 

.850 

.759 

.649 

.528 

.409 

.300 

.210 

.139 

.087 

.052 

.030 

.016 

.008 

.004 

.002 

.001 

.000 

.999 

.995 

.985 

.962 

.921 

.857 

.768 

.659 

.540 

.421 

.311 

.219 

.146 

.093 

.056 

.032 

.018 

.009 

.005 

.002 

.001 

.000 
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XaO-2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 

i-lltl 
1.00 
.999 
.995 
.986 
.965 
.925 
.863 
.777 
.670 
.552 
.433 
.322 
.228 
.153 
.093 
.060 
.035 
.019 
.010 
.005 
.003 
.001 
.001 
.000 

11.2 
1.00 
.999 
.996 
.987 
.967 
.929 
.869 
.785 
.681 
.564 
.445 
.333 
.238 
.161 
.104 
.064 
.037 
.021 
.011 
.006 
.003 
.001 
.001 
.000 

11.3 
1.00 
.999 
.996 
.988 
.969 
.933 
.875 
.794 
.691 
.575 
.456 
.345 
.247 
.169 
.109 
.068 
.040 
.022 
.012 
.006 
.003 
.001 
.001 
.000 

_1LJ 
1.66 1.66 
.999 
.996 
.988 
.971 
.936 
.881 
.802 
.701 
.587 
.468 
.356 
.257 
.177 
.115 
.072 
.043 
.024 
.013 
.007 
.003 
.002 
.001 
.000 

.999 

.997 

.989 

.972 

.940 

.886 

.809 

.711 

.598 

.480 

.367 

.267 

.185 

.122 

.076 

.046 

.026 

.014 

.008 

.004 

.002 

.001 

.000 

11.6 
1.00 
.999 
.997 
.990 
.974 
.943 
.892 
.817 
.721 
.609 
.492 
.378 
.277 
.193 
.128 
.081 
.049 
.028 
.016 
.008 
.004 
.002 
.001 
.000 

11.7 

I?<56 
.999 
.997 
.991 
.975 
.946 
.897 
.824 
.730 
.621 
.504 
.390 
.287 
.202 
.135 
.086 
.052 
.030 
.017 
.009 
.005 
.002 
.001 
.000 

-firf-
.999 
.997 
.991 
.977 
.949 
.901 
.831 
.740 
.631 
.515 
.401 
.298 
.210 
.141 
.091 
.056 
.033 
.018 
.010 
.005 
.002 
.001 
.001 
.000 

4W-
.999 
.998 
.992 
.978 
.952 
.906 
.838 
.749 
.642 
.527 
.413 
.308 
.219 
.148 
.096 
.059 
.035 
.020 
.011 
.006 
.003 
.001 
.001 
.000 

-m 
.999 
.998 
.992 
.980 
.954 
.910 
.845 
.758 
.653 
.538 
.424 
.318 
.228 
.156 
.101 
.063 
.037 
.021 
.012 
.006 
.003 
.001 
.001 
.000 

x-0-3 
4 
5 
6 
7 
8 
9 
10 
U 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 

4-12,1 
1.06 
.998 
.993 
.981 
.957 
.915 
.851 
.766 
.663 
.550 
.435 
.329 
.237 
.163 
.107 
.067 
.040 
.023 
.013 
.007 
.003 
.002 
.001 
.000 

12.2 
1.00 
.998 
.993 
.982 
.959 
.919 
.858 
.775 
.673 
.561 
.447 
.340 
.246 
.170 
.113 
.071 
.043 
.025 
.014 
.007 
.004 
.002 
.001 
.000 

12.-5 
1.00 
.998 
.994 
.983 
.961 
.923 
.864 
.783 
.683 
.572 
.458 
.350 
.256 
.178 
.118 
.075 
.046 
.027 
.015 
.008 
.004 
.002 
.001 
.000 

12.4 
1.00 
.998 
.994 
.984 
.963 
.927 
.869 
.791 
.693 
.583 
.470 
.361 
.265 
.186 
.124 
.080 
.049 
.029 
.016 
.009 
.004 
.002 
.001 
.000 

12. «5 
I.OO 
..998 
.995 
.985 
.965 
.930 
.875 
.799 
.703 
.594 
.481 
.372 
.275 
.194 
.131 
.084 
.052 
.031 
.017 
.009 
.005 
.002 
.001 
.001 
.000 

12.6 
1.00 
.999 
.995 
.986 
.967 
.934 
.880 
.806 
.712 
.605 
.492 
.383 
.285 
.202 
.137 
.089 
.055 
.033 
.019 
.010 
.005 
.003 
.001 
.001 
.000 

12.7 
1.00 
.999 
.995 
.987 
.969 
.937 
.886 
.813 
.722 
.616 
.504 
.394 
.295 
.210 
.144 
.094 
.059 
.035 
.020 
.011 
.006 
.003 
.001 
.001 
.000 

12.8 
1.00 
.999 
.996 
.988 
.971 
.940 
.891 
.821 
.731 
.626 
.515 
.405 
.305 
.219 
.150 
.099 
.062 
.037 
.022 
.012 
.006 
.003 
.002 
.001 
.000 

12.9 
1.00 
.999 
.996 
.989 
.973 
.943 
.896 
.827 
.740 
.637 
.526 
.416 
.315 
.228 
.157 
.104 
.066 
.040 
.023 
.013 
.007 
.004 
.002 
.001 
.000 

n.o 
1.00 
.999 
.996 
.989 
.974 
.946 
.900 
.834 
.748 
.647 
.537 
.427 
.325 
.236 
.165 
.110 
.070 
.043 
.025 
.014 
.008 
.004 
.002 
.001 
.000 



www.manaraa.com

177 

q.13.1 1-5.2 13.5 1-5.A 13.5 13.6 15.7 13.8 13.9 1A.0 
XaO-5 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

4 .999 .999 .999 .999 .999 .999 .999 .999 .999 1.00 
5 .997 .997 .997 .997 .997 .998 .998 .998 .998 .998 
6 .990 .991 .991 .992 .992 .993 .993 .994 .994 .994 
7 .976 .977 .978 .980 .981 .982 .983 .984 .985 .986 
8 .949 .951 .954 .956 .959 .961 .963 .965 .967 .968 
9 .905 .909 .913 .917 .921 .925 .928 .932 .935 .938 

10 .841 .847 .853 .859 .865 .870 .876 .881 .886 .891 
11 .757 .765 .773 .781 .789 .796 .804 .811 .818 .824 
12 .657 .667 .677 .686 .696 .705 .714 .723 .731 .740 
13 .548 .559 .569 .580 .591 .601 .611 .622 .632 .642 
14 .438 .449 .460 .471 .482 .493 .503 .514 .525 .536 
15 .335 .345 .356 .366 .377 .387 .398 .408 .419 .430 
16 .245 .254 .264 .273 .282 .292 .301 .311 .321 .331 
17 .172 .179 .187 .195 .202 .211 .219 .227 .235 .244 
18 .115 .121 .127 .133 .139 .146 .152 .159 .166 .173 
19 .074 .078 .082 .087 .092 .096 .101 .107 .112 .117 
20 .045 .048 .051 .055 .058 .061 .065 .069 .072 .077 
21 .027 .029 .031 .033 .035 .037 .040 .042 .045 .048 
22 .015 .016 .018 .019 .020 .022 .024 .025 .027 .029 
23 .008 .009 .010 .011 .011 .012 .013 .014 .016 .017 
24 .004 .005 .005 .006 .006 .007 .007 .008 .009 .009 
25 .002 .002 .003 .003 .003 .004 .004 .004 .005 .005 
26 .001 .001 .001 .001 .002 .002 .002 .002 .002 .003 
27 .001 .001 .001 .001 .001 .001 .001 .001 .001 .001 
28 .000 .000 .000 .000 .000 .000 .000 .001 .001 .001 
29 .000 .000 .000 

q»14,l 14,2 14,? 14,4 14,5 14,6 14,7 14,8 14,9 » t Q 
X-0-4 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

5 .998 .998 .999 .999 .999 .999 .999 .999 .999 .999 
6 .995 .995 .995 .996 .996 .996 .997 .997 .997 .997 
7 .987 .987 .988 .989 .990 .990 .991 .991 .992 .992 
8 .970 .972 .973 .975 .976 .977 .979 .980 .981 .982 
9 .941 .944 .947 .949 .952 .954 .956 .958 .961 .963 

10 .895 .900 .904 .908 .912 .916 .920 .923 .927 .930 
11 .831 .837 .843 .849 .855 .861 .866 .371 .877 .882 
12 .748 .756 .764 .772 .780 .787 .795 .302 .809 .815 
13 .651 .661 .670 .680 .689 .698 .707 .715 .724 .732 
14 .546 .557 .567 .577 .587 .598 .608 .617 .627 .637 
15 .440 .451 .461 .472 .482 .493 .503 .514 .524 .534 
16 .341 .351 .361 .371 .381 .391 .401 .411 .422 .432 
17 .253 .262 .271 .280 .289 .298 .307 .317 .326 .336 
18 .180 .187 .195 .203 .210 .218 .226 .234 .243 .251 
19 .123 .129 .135 .141 .147 .153 .160 .167 .174 .181 
20 .081 .085 .089 .094 .099 .104 .109 .114 .119 .125 
21 .051 .054 .057 .060 .064 .067 .071 .075 .079 .083 
22 .031 .033 .035 .037 .040 .042 .045 .047 .050 .053 
23 .018 .019 .021 .022 .024 .025 .027 .029 .031 .033 
24 .010 .011 .012 .013 .014 .015 .016 .017 .018 .019 
25 .005 .006 .006 .007 .008 .008 .009 .010 .010 .011 
26 .003 .003 .003 .004 .004 .004 .005 .005 .006 .006 
27 .001 .002 .002 .002 .002 .002 .003 .003 .003 .003 
28 .001 .001 .001 .001 .001 .001 .001 .001 .002 .002 
29 .000 .000 .000 .000 .001 .001 .001 .001 .001 .001 
30 .000 .000 .000 .000 .000 .000 
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XaO-4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 

q-lM 
1.00 
.999 
.997 
.993 
.983 
.964 
.933 
.886 
.822 
.741 
.646 
.545 
.442 
.346 
.260 
.188 
.130 
.087 
,056 
.035 
.021 
.012 
.007 
.004 
.002 
.001 
.000 

15,2 
1.00 
.999 
.998 
.993 
.984 
.966 
.936 
.891 
.828 
.749 
.656 
.555 
.452 
.355 
.268 
.195 
.136 
.092 
.059 
.037 
.022 
.013 
.007 
.004 
.002 
.001 
.001 
.000 

Xa0-5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 

<1-16-1 
1.00 
.999 
.996 
.991 
.979 
.959 
.926 
.878 
.813 
.734 
.642 
.543 
.444 
.350 
.266 
.195 
.137 
.094 
.061 
.039 
.024 
.014 
.008 
.004 
.002 
.001 
.001 
.000 

16.2 
1.00 
.999 
.996 
.991 
.980 
.961 
.929 
.883 
.820 
.741 
.651 
.553 
.454 
.359 
.274 
.202 
.143 
.098 
.065 
.041 
.025 
.015 
.009 
.005 
.003 
.001 
.001 
.000 

l?t? 15,* 15,5 15.6 
1.00 
.999 
.998 
.994 
.985 
.968 
.939 
.895 
.834 
.756 
.665 
.565 
.463 
.365 
.277 
.202 
.142 
.096 
.063 
.039 
.024 
.014 
.008 
.004 
.002 
.001 
.001 
.000 

1.00 
.999 
.998 
.994 
.986 
.970 
.942 
.900 
.840 
.764 
.674 
.575 
.473 
.375 
.286 
.210 
.148 
.101 
.066 
.042 
.025 
.015 
.008 
.005 
.002 
.001 
.001 
.000 

1.00 
.999 
.998 
.994 
.987 
.971 
.945 
.904 
.846 
.772 
.683 
.585 
.483 
.385 
.295 
.218 
.154 
.106 
.070 
.044 
.027 
.016 
.009 
.005 
.003 
.001 
.001 
.000 

1.00 
.999 
.998 
.995 
.987 
.973 
.947 
.908 
.852 
.779 
.692 
.594 
.493 
.394 
.304 
.225 
.161 
.111 
.073 
.047 
.029 
.017 
.010 
.005 
.003 
.002 
.001 
.000 

16.3 16.4 16.5 16.6 
1.00 
.999 
.997 
.992 
.981 
.963 
.932 
.887 
.826 
.749 
.660 
.563 
.464 
.369 
.283 
.209 
.149 
.103 
.068 
.044 
.027 
.016 
.009 
.005 
.003 
.001 
.001 
.000 

1.00 
.999 
.997 
.992 
.982 
.965 
.935 
.892 
.832 
.757 
.669 
.572 
.474 
.378 
.292 
.217 
.155 
.107 
.072 
.046 
.029 
.017 
.010 
.006 
.003 
.002 
.001 
.000 

1.00 
.999 
.997 
.993 
.983 
.966 
.938 
.896 
.838 
.764 
.677 
.582 
.484 
.388 
.300 
.224 
.162 
.112 
.075 
.049 
.030 
.018 
.011 
.006 
.003 
.002 
.001 
.000 

1.00 
.999 
.997 
.993 
.984 
.966 
.941 
.900 
.844 
.772 
.686 
.591 
.493 
.398 
.309 
.232 
.168 
.117 
.079 
.051 
.032 
.020 
.012 
.007 
.004 
.002 
.001 
.001 

15.7 15.8 15.q 16.0 
1.00 1.00 1.00 1.00 
.999 1.00 1.00 1.00 
.998 .998 .999 .999 
.995 .995 .995 .996 
.988 .989 .989 .990 
.974 .975 .977 .978 
.950 .952 .955 .957 
.912 .916 .919 .923 
.857 .863 .868 .873 
./86 .793 .800 .807 
.700 .709 .717 .725 
.604 .614 .623 .632 
.503 .513 .523 .533 
.404 .414 .424 .434 
.313 .322 .331 .341 
.233 .241 .249 .258 
.167 .174 .181 .188 
.116 .121 .126 .132 
.077 .081 .085 .089 
.049 .052 .055 .058 
.031 .033 .035 .037 
.018 .020 .021 .022 
.011 .011 .012 .013 
.006 .006 .007 .007 
.003 .003 .004 .004 
.002 .002 .002 .002 
.001 .001 .001 .001 
.000 .000 .001 .001 

.000 .000 

16.7 16.8 16.9 17.0 
1.00 1.00 1.00 1.00 
.999 .999 .999 .999 
.997 .998 .998 .998 
.993 .994 .994 .995 
.985 .986 .987 .987 
.970 .971 .972 .974 
.944 .946 .949 .951 
.904 .908 .912 .915 
.849 .855 .860 .865 
.779 .786 .792 .799 
.695 .703 .711 .719 
.601 .610 .619 .629 
.503 .513 .523 .532 
.407 .417 .426 .436 
.318 .327 .336 .345 
.240 .248 .256 .264 
.174 .181 .188 .195 
.122 .128 .133 .139 
.083 .087 .091 .095 
.054 .057 .060 .063 
.034 .036 .038 .041 
.021 .022 .024 .025 
.012 .013 .014 .015 
.007 .008 .008 .009 
.004 .004 .005 .005 
.002 .002 .003 .003 
.001 .001 .001 .001 
.001 .001 .001 .001 
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q.17.1 17.2 17.5 17.A 17.5 17.6 17.7 17.8 17.9 18.0 
XaO-5 1.00 1.00 iToo1.00 1.00 1.00 1.00 1.00 1.00 1.00 

6 .999 .999 .999 .999 1.00 1.00 1.00 1.00 1.00 1.00 
7 .998 .998 .998 .998 .999 .999 .999 .999 .999 .999 
8 .995 .995 .995 .996 .996 .996 .996 .997 .997 .997 
9 .988 .989 .989 .990 .991 .991 .992 .992 .993 .993 

10 .975 .976 .978 .979 .980 .981 .982 .983 .984 .985 
11 .953 .955 .957 .959 .961 .963 .965 .967 .968 .970 
12 .919 .922 .925 .929 .932 .935 .937 .940 .943 .»45 
13 .870 .875 .879 .884 .888 .893 .897 .901 .905 .908 
14 .806 .812 .818 .824 .830 .836 .841 .847 .852 .857 
15 .727 .735 .743 .750 .757 .765 .772 .779 .785 .792 
16 .638 .646 .655 .664 .672 .681 .689 .697 .705 .713 
17 .542 .551 .561 .570 .580 .589 .598 .607 .616 .625 
18 .446 .455 .465 .474 .484 .494 .503 .513 .522 .531 
19 .354 .363 .373 .382 .391 .400 .410 .419 .428 .438 
20 .272 .280 .288 .297 .305 .314 .323 .331 .340 .349 
21 .201 .209 .216 .223 .231 .238 .246 .254 .261 .269 
22 .144 .150 .156 .162 .168 .174 .181 .187 .194 .201 
23 .100 .104 .109 .114 .118 .124 .129 .134 .139 .145 
24 .067 .070 .073 .077 .081 .085 .089 .093 .097 .101 
25 .043 .045 .048 .050 .053 .056 .059 .062 .065 .068 
26 .027 .028 .030 .032 .034 .036 .038 .040 .042 .045 
27 .016 .017 .018 .020 .021 .022 .024 .025 .027 .028 
28 .009 .010 .011 .012 .013 .013 .014 .015 .016 .017 
29 .005 .006 .006 .007 .007 .008 .008 .009 .010 .010 
30 .003 .003 .003 .004 .004 .004 .005 .005 .006 .006 
31 .002 .002 .002 .002 .002 .002 .003 .003 .003 .003 
32 .001 .001 .001 .001 .001 .001 .001 .002 .002 .002 
33 .000 .000 .001 .001 .001 .001 .001 .001 .001 .001 
34 .000 .000 .000 .000 .000 .000 .000 .000 

, oaia.l 18.2 18.5 18.4 18.5 18.6 18.7 18.8 18.9 19.0 
xa0-6 1700 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

7 .999 .999 .999 .999 .999 .999 .999 .999 .999 .999 
8 .997 .997 .998 .998 .998 .998 .998 .998 .998 .998 
9 .993 .994 .994 .994 .995 .995 .995 .996 .996 .996 

10 .985 .986 .987 .988 .988 .989 .990 .990 .991 .991 
11 .971 .973 .974 .975 .976 .978 .979 .980 .981 .982 
12 .948 .950 .952 .954 .956 .958 .960 .962 .964 .965 
13 .912 .915 .919 .922 .925 .928 .931 .934 .937 .939 
14 .862 .867 .872 .877 .881 .885 .890 .894 .898 .902 
15 .798 .805 .811 .817 .823 .829 .834 .840 .845 .850 
16 .721 .729 .736 .744 .751 .758 .765 .772 .779 .785 
17 .634 .642 .651 .659 .668 .676 .684 .692 .700 .708 
18 .541 .550 .559 .568 .577 .586 .595 .604 .613 .622 
19 .447 .456 .466 .475 .484 .494 .503 .512 .521 .531 
20 .358 .367 .376 .385 .394 .403 .412 .421 .430 .439 
21 .277 .285 .294 .302 .310 .319 .327 .336 .344 .353 
22 .208 .215 .222 .229 .236 .244 .251 .259 .267 .275 
23 .151 .156 .162 .168 .174 .181 .187 .194 .200 .207 
24 .106 .110 .115 .120 .125 .130 .135 .140 .145 .151 
25 .072 .075 .079 .082 .086 .090 .094 .098 .102 .107 
26 .047 .050 .052 .055 .058 .061 .064 .067 .070 .073 
27 .030 .032 .033 .035 .037 .039 .042 .044 .046 .049 
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x-28 
29 
30 
31 
32 
33 
34 
35 
36 

XaO-7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 

a a i a . i i s . 2 ia .5 la.A i a . g ia .g i s . 7 l a . a i s . 9 ig .o 
.018 
.011 
.006 
.004 
.002 
.001 
.001 
.000 

.020 

.012 

.007 

.004 

.002 

.001 

.001 

.000 

.021 

.013 

.007 

.004 

.002 

.001 

.001 

.000 

.022 

.013 

.008 

.005 

.003 

.001 

.001 

.000 

.023 

.014 

.008 

.005 

.003 

.001 

.001 

.000 

.025 

.015 

.009 

.005 

.003 

.002 

.001 

.000 

ULJ. 
7026 
.016 
.010 
.006 
.003 
.002 
.001 
.000 

.028 

.017 

.010 

.006 

.003 

.002 

.001 

.001 

.000 

.030 

.018 

.011 

.007 

.004 

.002 

.001 

.001 

.000 

.031 

.020 

.012 

.007 

.004 

.002 

.001 

.001 

.000 

T i q 4 IQ-? i q i? i q -4 l q ^ 1<?-$ ^ - 7 i q - a i q - Q 2Q-° 
1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 .999 
.996 
.992 
.983 
.967 
.942 
.905 
.855 
.792 
.716 
.630 
.540 
.449 
.362 
.282 
.214 
.157 
.111 
.077 
.051 
.033 
.021 
.013 
.007 
.004 
.002 
.001 
.001 
.000 

.999 

.997 

.992 

.983 

.968 

.944 

.909 

.860 

.798 

.723 

.639 

.549 

.458 

.370 

.290 

.221 

.162 

.116 

.080 

.054 

.035 

.022 

.013 

.008 

.005 

.003 

.001 

.001 

.000 

.999 

.997 

.993 

.984 

.970 

.947 

.912 

.865 

.804 

.731 

.647 

.558 

.467 

.379 

.298 

.228 

.168 

.121 

.084 

.056 

.037 

.023 

.014 

.009 

.005 

.003 

.002 

.001 

.000 

.999 

.997 

.993 

.985 

.971 

.949 

.916 

.870 

.810 

.738 

.655 

.567 

.476 

.388 

.306 

.235 

.174 

.125 

.087 

.059 

.039 

.025 

.015 

.009 

.005 

.003 

.002 

.001 

.000 

1.00 
.999 
.997 
.993 
.986 
.973 
.951 
.919 
.874 
.816 
.745 
.664 
.575 
.485 
.397 
.315 
.242 
.180 
.130 
.091 
.062 
.041 
.026 
.016 
.010 
.006 
.003 
.002 
.001 
.001 
.000 

.999 

.997 

.994 

.987 

.974 

.953 

.922 

.879 

.822 

.752 

.672 

.584 

.494 

.405 

.323 

.249 

.187 

.135 

.095 

.065 

.043 

.028 

.017 

.010 

.006 

.004 

.002 

.001 

.001 

.000 

1.00 
.999 
.997 
.994 
.987 
.975 
.955 
.925 
.883 
.827 
.759 
.680 
.593 
.503 
.414 
.331 
.257 
.193 
.141 
.099 
.068 
.045 
.029 
.018 
.011 
.007 
.004 
.002 
.001 
.001 
.000 

1.00 
.999 
.998 
.994 
.988 
.976 
.957 
.928 
.887 
.833 
.766 
.688 
.602 
.512 
.423 
.339 
.264 
.199 
.146 
.103 
.071 
.048 
.031 
.019 
.012 
.007 
.004 
.002 
.001 
.001 
.000 

1.00 
.999 
.998 
.995 
.989 
.978 
.959 
.931 
.891 
.838 
.772 
.695 
.610 
.521 
.432 
.348 
.272 
.206 
.151 
.108 
.075 
.050 
.033 
.021 
.013 
.008 
.004 
.002 
.001 
.001 
.000 

1.00 
.999 
.998 
.995 
.989 
.979 
.961 
.934 
.895 
.843 
.779 
.703 
.619 
.530 
.441 
.356 
.279 
.213 
.157 
.112 
.078 
.052 
.034 
.022 
.013 
.008 
.005 
.003 
.001 
.001 
.000 
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APPENDIX C 

ALGORITHMS TO COMPUTE THE ACCEPTANCE/REJECTION REGIONS, 

POWER, AND ASN OF SEQUENTIAL MUAS 

(Note: The following algorithms are written in Pascal, and, 
except for the nonstandard file "input/" and its operator 
"readln", syntax and usage comply with the Jensen-Wirth 
standard.) 

program accrej( input/, output, tree, param, arfile); 
("computes the acceptance/rejection regions for sequential MUAS 
output to file "tree"; similar information, formatted for 
use in the program "direct", is output to the file "arfile". 
Input file "param" must contain parameters in the following 
format: 
low error rate high error rate 
log bound for acceptance log bound for rejection 
fixed sample size critical value 

(other bounds/sample sizes for the same error 
rates may follow) *) 

const 
maxlevel=50; 
maxbranchalOO; 

var 
h,i,j,k, m,n, cv,levela,le-velr, levels: integer; 
loga, logb, pl, p 2, denom, num, fact 2, fact la, fact lb: real; 
a,r:arraytl..maxlevel,1..23 of integer; 
ar:arrayCO..maxlevel,1..33 of integer; 
tree,param,arfile:text; 
flag •:boolean; 

begin 
rewrite (tree); 
rewrite(arfile); 
reset(param); 
readlnlparam,pl,p2); 
while not eofTparam) do 
begin 

readln(param,loga.logb); 
readln(param,n,cv); 
denom:=ln(p2/pl)-ln((l.0-p2)/(l.0-pl))j 
num:=ln((1.0-pl)/(1.0-p2)); 
fact 2 :snum/denoQ; 
fact la: =loga/denom; 
f actlb:alogb/denom; 
i:sO; 
j:=0; 
m:=0; 
while m < n do 

begin 
j :=j+l ; 
m:atrunc((i-factla)/fact2)+l; 
aLj,13 :=m; 
acj,23:=is 
i : - i + l ; 

end; 
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levela:=j; 
a [ l eve la , l l :=n; 
i f l e v e l a > l 

then af levela , 21: aa[levela-1,21 +1 
else aflevela,21:=0; 

i : a l ; 
j :»0; 
m:a0; 
while (m<n) and ( i<«cv) do 

begin 
m:atrune( ( i - f ac t lb ) / fac t2 ) ; 
i f m>ai 

then 
begin 

j :» j+ l ; 
rEj,l"J:am; 
rCj,2J:=i; 

end; 
i :« i+ l ; 

end; ' 
i f j > a l 

then l eve lr :a j 
else l eve l r :a l ; 

rClevelr,l"J:»n; 
r[levelr,2"j:»cv; 
writeln(tree); 
writelnt t r e e , ' acceptance numbers:'); 
wri te ln( tree , ' m a a(m)'); 
for 1:»1 to leve la-1 do 

wri te ln( tree ,ar i , l3 :5 , ' ' ,aCi ,2l :5); 
wri te( tree ,a£levela , l l :5»' ' ,a£ leve la ,2 l :5) ; 
for i:aarievela,21+l to cv-1 do 

wr i t e ( t ree . • , ' , i : l ) ; 
write ln(tree); 
writeln(tree); 
writelnCtree, 'rejection numbers:'); 
write ln(tree,• m a r(m)'); 
for i :=l to l eve l r do 
writeln(tree,r[i,l3:5,' ',r[i,23:5); 

writeln(tree); 
writeln(tree,'input data:'); 
writelnCtree,*pl=',pl:8;6,' p2=',p2:3:6); 
writeln(tree,'log aa' ,loga:8:6, * log b=',logb:8:6); 
writeln(tree,'na',n:8,' cva',ev:8); 
writeln(tree); 
ir-1; 

ar 0,1 :a0; 
ar 0,2 :=0; 
ar 0,3 5=0; 
flag:atrue; 
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for j :a l to l eve la do 
begin 

while rCi , l l < a [ j , l ] do 
begin 

ar[k,l3 :arCi , l ] ; 
i f f lagsfalse 

then ar[k,21:=ar[k-l ,2l+l 
else ar[k,2l:=arCk-l,2]; 

arCk,31:«rCi,2l-l; 
i f a r l k , l > a r r k - l , l 1 

then 
begin 

arCx-l,3l:aar[k,33; 
k:*k-l; 

end; 
U - i + 1 ; 
k:-k+l; 
flag:atrue; 

end; 
arCk,n:aard,11; 
ar[k,21:aaCj,2l; 
If flagatrue 

then ar[k,31'.=arCk-l,3l+l 
else arrkv3l:=ar£k-l,31; 

i f i - 1 
then arfk ,3] :=rr i ,2 ] - l ; 

k:=k+l; 
flag:=falae; 

end; X*i*) 
leve ls :=k- l ; 
for i : a l to l e v e l s do 

i f ari*i,3]>=»cv-l 
then arCi ,3l:acv- l ; 

wri te ln(arf i le ) ; 
wr i te ln (ar f i l e , l eve l s :2 ) ; 
for i t a i to l e v e l s do 

w r i t e l n ( a r f i l e , a r r i , l l : 3 , ' ' , a r r i , 2 l : 3 , ' ' ,arCi,3"J:3) 5 
end; (*whlle*) 

end. (*accrej*) 

program direct ( input/ , output, power, a r f i l e ) ; 
("computes power and asn for sequential muas given one or 

more acceptance/rejection regions in "arfile" as generated 
by the program "accrej"—warning: these regions are not 
ordinary regions and only output from "accrej" should be 
used, output i s to the f i l e "power". *) 

const 
maxlevel=50; 
maxbranchalOO; 

var 
i , j ,k ,m,n,cv, levels: integer; 
index:arrayCO. .maxbranchl of integer; 
b r, s: ar r ay CO. .maxb ranch 3 of real; 
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ar:arrayC0..maxlevel,1..3J> of integer; 
alpha, beta, en, es ,x,p:real; 
power, arf i l e : t ex t ; 
flag, co nt: boolean ; 
chrchar; 

function comb(n,k:integer) :real; 
("computes combinations of n things taken k at a time; 

returns real value to avoid integer overflow problems") 
var 

i , j : in teger; 
tot : real; 

begin 
if (k<0) or (n<0) 

then comb:=0.0 
e l s e i f kaO 

then comb:al.o 
e l se 

begin 
to t :»1 .0; 
i:an-k+l; 
j : - l ; 
while ( K a n ) and ( j<ak) do 

begin 
t o t s » t o t * ( i / j ) ; 
i : -x+ l ; 
j :=j+l; 

end; 
comb:=tot; 

end; ("else") 
end; (*comb*) 

function biprob(n,k:integer;p:real):real; 
("computes binomial probability of k occurrences with 

parameters n and p") 
begin 

i f (p<=0.0) or (p>=1.0) 
then biprob:=O.0 
e l s e biprob:acomb(n,k)*exp(k*ln(p))*exp((n-k)*ln(1.0-p)); 

end; ("biprob") 
begin 

rewrite(power); 
reset ( a r f i l e ) : 
while not eof( arf i le ) do 

begin 
readln( a r f i l e , l eve l s ) ; 
for i:=l to l eve l s do 

readln(arfile,arCi,l"J,ari:i,2"a,arCi,33); 
arCO,lJ:=0; 
arCO,23:=0; 
arCO,33:=0; 
arClevel3+l,l3:=arClevel3,l]+l; 
ar Clevels+1,2 3 :=arClevels, 3J+1; 
artlevels+l,31:=arClevels,31; 
n: sarClevels, 1 ] ; 
cv: aarClevels ,31+1; 
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cont:=true; 
while cont=true do 

begin 
for i :=0 to maxbranch do 

sCil:a0.0; 
alpha:=0.0; 
index CO 1?«0; 
i n d e x m :aar 1,2 ; 
brt0J:«1.0; 
writeln(' enter p , e.g. 0 .05 ' ) ; 
readln: 
read(p); 
i :» l ; 
repeat 

m:»arri,13 -arCi-1,13; 
k:aindexC11-indexCi-11; 
brCi*l:-biprob(ai,k,p)*brCi-l"l; 
i : - i + l ; 
lndexriTl:-index Ti - l l ; 
i f indexLn<arti,2"3 

then 
begin 

i : » i - l ; 
alpha:»alpha+br[n; 
a [index t i l l :=srindexriH +br[i] ; 
indexCil :»index[n +1; 
while ( index[il > arCi,3l) and ( i ? 0 ) do 

begin 
i t a i - 1 ; 
indexCi"J :=indexCi]+l; 

end; 
end; ("then*) 

until i=0; 
beta: al .0-alpha; 
es:=0.O; 
for i : » l to cv-1 do 

es:se8+(i"sCil) ; 
x:a0.0; 
i f (arCl ,34<cv- l ) and (ar[l,2"l=0) 

then 
begin 

for i:a0 t o arClt33 do 
x:ax+biprob(art l , l l , i ,p) ; 

x:a i .0-x; 
end: 

es:3es+((arCl»33-H)*x)+(cv*(beta-x)); 
en:aes/p; 
writelm power); 
writeln(power,'expected sample size and power:'); 
writ eln(power,• pa' ,p:8:6 , ' E(N)a»,en:5:2, 

'beta(p)a* ,beta:8:6); 
write lm power); 
writeln('continue on this t e s t for another p? yayes, 

n=no'); 
readln; 
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read(ch); 
if cha'y' 
then cont:atrue 
else cont:=false; 

end; ("while") 
writeln(power, 'input data:'); 
writeln(power,' m a(m)" r(m)-l'); 
for i:al to levels do 
writeln(power,arCi,H:4,' ',arCi,2a:4,' ',ar[i,33:4); 

writ eln( power); 
writeln(power,'" x is acceptance number only for the 
highest m such that xaa(m)'); 

end; ("eof") 
end. ("direct") 

i 
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APPENDIX D 

ALGORITHM TO FIND MUAS BATES RULE 

(Note: The following algorithm is written in Pascal, and, 
except for the nonstandard file "input/" and its operator 
"readln", usage conforms with the Jensen-Mirth standard. 
A graph of expected loss versus sample size for n"-50 to 
n*+50 is produced if desired.) 

program baysamp( input/, output ,loss); 
("finds optimal fixed sample size for Bayesian MUAS and 
the corresponding sequential bounds") 

const 
min=20; 
max=500; 
width=50; 
scale=5.0; 

var 
i,j,k,m,n,q,kstar,nstar, start, stop: integer; 
a, b,pl,p2, alpha, beta, Iambi, lamb2,c,ql,q2,Lstar,x,y,Lo, 
hi:real; 

L:array[min. .max] of real; 
loss:test; 
oh:char; 
continue:boolean; 

function prob(q:integer;rtrvsX) :real; 
("computes Poisson probability of X>=q, where q< =300 
and the Poisson parameter is r") 

var 
i : in teger ; 
p:real ; 
s : array tO. . 300"! of rea l ; 

begin 
s£03:aexp(-r ) ; 
p:asC0*J; 
for i : a l to q-1 do 

begin 
s C i 3 : a s C i - l ] * r / i ; 
p:ap+sCi"i; 

end; 
prob:al .O-p; 

end; ("prob") 
procedure header; 

var 
i , j : i n t eger ; 

begin 
w r i t e ( l o s s , ' L : ' ) ; 
for i : = l to 10 do 

begin 
j :=round(lO*i*scale); 
w r i t e ( l o s s , ' « , j : 4 ) ; 

end; 
end; ("header") 
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begin ("baysamp") 
rewrite(loss); 
c ont inue: at rue; 
while continuestrue do 
begin 

writeln( 'enter Lo and hi error rates, e.g. 0.01 0.05'); 
readln; 
read(pl.p2); 
writeln('enter type I and II losses, e.g. 1000 2000*); 
readln; 
read( alpha,beta); 
writeln('enter prior for lo error rate, e.g. 0.75'); 
readln; 
read(ql); 
q2:=1.0-ql; 
Lstar:a(qi*alpha)+(q2*beta); 
c:a(ql*alpha)/(q2*beta); 
for n:=min to max do 
begin 
Iambi :an*pl; 
Iamb2:=n*p2; 
x:alambl-lamb2; 
y:alamb2/lambl: 
k:»trunc(( ln(c)-x) / ln(y))+l; 
Lrnl:a(qi*prob(k,lambl]*alpha)+(q2*(1.0-prob(k,lamb2)) 

*beta)+nj 
i f L[nl<aLstar 

then 
begin 

Lstar:aLrnl; 
nstar:=n; 
kstar:=k; 

end; 
end; ("for") 

a:ain( (ql/q2)*(Lstar-nstar)/(beta-Lstar+natar)); 
b:ain( (ql/q2)*(alpha-Lstar+nstar)/(Lstar-nstar)); 
Lo:aln(Cl.0-p2)/(1.0-Dl)); 
hi :ain(p2/pl) ; 
wri te ln( loss) ; 
wr i t e ln ( lo s s , ' t e s t of ' , p l : 5 : 3 , ' vs * , p 2 : 5 : 3 , ' : ' ) ; 
w r i t e l n d o s s , ' prior for low ratea' ,q l :5 :3 ) ; 
w r i t e l n d o s s , ' l o s se s : EL2=',alpha:10:l,' K21=', 

beta:10:l); 
w r i t e l n d o s s , ' L=' ,Lstar:6: l ) ; 
w r i t e l n d o s s , ' n=' ,nstar:6); 
w r i t e l n d o s s . ' C=' ,katar:6); 
wr i te lndoss ) ; 
w r i t e l n d o s s , ' sequential t e s t : ' ) ; 
w r i t e l n d o s s , ' bounds: ' ,a:6:3»' ' ,b :6 :3 ) ; 
w r i t e l n d o s s , ' incrmn: ' ,Lo:6:3, ' ' , h i : 6 : 3 ) ; 
writeln( 'graph of losses? y=yes, n=no'); 
readln; 
read(ch); 
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i f ch='y' 
then 

begin 
wr i te lndoss ) ; 
header; 
wr i te lndoss ) ; 
wr i t e lndoss , 'n: ' ) ; 
s tart: anstar-widxh; 
i f start < min 

then start:smin; 
st op: anst ar+wldth; 
i f stop > max 

then atop:=max; 
for i:=atart to stop do 

begin 
wr i t e ( lo s s , i :4 ) ; 
q:around(Ltil/scale); 
i f q<100 

then 
begin 

for j:»l to q do 
write(loss,' •); 

writelndoss, ' * ' ) ; 
end 

else 
begin 

for j:=l to 99 do 
write(loss,' '); 

writelndoss, 'x'); 
end: 

end; ("i") 
header; 

end: ("then*) 
writelndoss); 
writeln('continue? y=yes, n=no'); 
readln; 
read(ch); 
if ch='y' 
then continue:=true 
else continue:=false; 

end; ("while") 
end. ("baysamp*) 
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APPENDIX E 

TEST POPULATION GENERATOR 

(Note: The fol lowing algorithm i s wri t ten in Pasca l , and, 
except for the nonstandard f i l e "input/" and i t s operator 
"readln", usage conforms with the Jensen-Wirth standard.) 

program population(input/,output,dist,er*rpop); 
("to generate an error population with a given random 

error pattern; output i s written to the f i l e "errpop"; 
the cumulative distribution function of the desired 
re la t ive error pattern must be input on a f i l e called 
"dist" with the following format: 

xl P(xl) 
x2 P(x2) 

xn F(xn) 
where xi<=»1.0 for a l l i , F(xl)=O.0, and F(xn)=1.0, 
and n< =100") 

const 
emax=2OO0; 
fmax=21; 
cmaxalOO; 

var 
h , i , j ,k ,L,over ,bover , cover, under, bunder, cum, run, tes t , 

cellcount: integer; 
a,b ,c ,d ,u,w, z , lo ,h i ,xbar, sampvar,wtvar, taint ,p l , p2, 

seed, mean, variance: real; 
pop:arrayCO. . 9 , 1 . . 2 l of integer; 
ep:arrayTl..emax,l. .31 o£ real; 
e e l l : array El. .fmaxl of real ; 
jdist:arrayCl. .cmax,1. .2l of real ; 
freq: array [1. .fmaxl of integer; 
errpop, d i s t : t ext; 

function random(x:real):real; 
("for 0 < = x < = l returns pseudorandom uniform(0,l) variable 

using D. Malm's generator—HP-67 Users' library") 
var 

y:real; 
begin 

y:=(9821*x)+0.211327; 
z:sy-trunc(y); 
random :=z; 

end; (""random*) 
function uniform(a,b:real):real; 

("returns pseudorandom uniform(a,b) variable") 
begin 

unlform:=( (b-a)*random( z) )+a; 
end; ("uniform") 

begin ("population") 
popt0,l"]:=0; 
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pop CO, 21 
popCI,11 
p o p [ 2 , H 
pop[3.11 
popC4,l l 
p o p [ 5 , l l . 
p o p r 6 , l l i 
p o p I 7 , l l 
pop£8,13: 
popC9,11i 
popCl,2l i 

:=0; 
5-105O 
t=1750 
•=2200 
:»2550 
•=3000 
=3400 

•*3550 
=3800 
a400O 
»75; 

popri f23:=popCi- l ,21*2; 
e e l l f 1 1 s -0 .0 ; 
f o r i :=2 to fmax-1 do 

c e l l C i l : a 0 . O 5 * ( i - l ) ; 
c e l l f fmax 1: a l . 001; 
f o r i : = l to fmax do 

freqCil:=0; 
wr i t e ln ( ' e n t e r run number, e . g . 1 ' ) ; 
readln; 
read (run); 
r e s e t ( d i s t ) ; 
readln( d i s t , e e l l c o u n t ) ; 
f o r i : = l to c e l l c o u n t do 

readln ( d i s t , jdistCi, l*] , jd i s tr i ,2*J) ; 
w r i t e l n ( ' e n t e r proportion of i tems i n error p l ' ) ; 
writelnC ' and proportion of 1009*J errors p2, TJ2 = p l ' ) ; 
wr i te ln ( * e . g . 0.05 0 . 0 1 ' ) ; 
readln; 
r e a d ( p l , p 2 ) ; 
wri te lnC'enter seed, 0 < s e e d < l , e .g . 0 . 4 4 3 3 ' ) ; 
readln; 
read(seed) ; 
z:=3eed; 
k:=0; 
h:=0; 
cum:=0; 
cover :=0; 
xbar:=0.0; 
sampvar:=0.0; 
wtvar:=O.0; 
f o r j : = l to 9 do 

begin 
for i:apopCj-1,11+1 t o p o p f j , l l do 

begin 
w:=random(z); 
i f w<=pl 

then 
begin 

k:ak+l; 
epCk,21:=(( i -popCj- l , l l )*popCj,2l )+cum; 
eplk,n:=epCk,23-popCj,21+1.0; 
L:»2; 
u:=random(z); 
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while u>jdistLL,23 do 
L:=L+1; 

epCk,31:=uniform(jdistCL-l,ll,jdistCL,l3); 
i f w<=p2 

then 
begin 

epCk,33:=l.O0; 
cover :=eover+round(eptk,2l-eptk,ll+1.0); 
h:ah+l; 
freqEf max!:=freqrf aaxl+1; 

end 
e l se 

begin 
xbar:=xbar+epCk,33; 
sampvar:=sampvar+sqr(epEk,33); 
L:ai; 
while ep[k ,33>ce l l [L] do 

L:»L+1; 
f req[ L3: =f reqLL"J+l; 

end; 
wtvarsawtvar+(sqr( epjjk,33)*( ep[k,2]-epCk, 13+1.0)); 

end: 
end; (*i*) 

cum:acum+((popCj,ll-popCj-l,l^)*popCj,2]); 
end; (*j") 

i f h<k 
then 

begin 
xbar:=xbar/(k-h); 
sampvar:=(sampvar/(k-h) )-sqr(xbar); 

end; 
over:=0; 
bover:=0; 
under:=0; 
bunder:=0; 
rewrite(errpop); 
writeln(errpcp.'run no. ',run:3); 
writeln(errpop); 
for i:=l to k do 
begin 

writeln(errpoo, i :4 . ' ' ,epCi,11:12:2,' • ,ep[ i ,23:12:2 , 
' ' ,epCi,3^:12:4); 

taint:=epfi ,23-epCi, l l +1.0; 
w:=taint*epfi,31; 
i f w>0.0 

then 
begin 

over:aover+round(w); 
bover: abover+round ( ta int ) ; 

end 
e l s e 

begin 
under:=under+round(w); 
bund er: abunder+round ( t a int ) ; 

end; 
end; ("i") 
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',pop 9,1 
',cum:10); 

bover:=bover-cover; 
wtvar:=(wtvar/cum)-sqr( (over+under)/cum); 
writelnCerrpop. 'summary of errop pop ',run:3); 
writeln( errpop); 
writelnC errpop,' parent pop: items 
writeln( errpop.' dollars 
writelnC errpop); 
writelnC errpop,' error distribution 
writelnC errpop,' x a ' , c e l l f l 3 
for i:=2 to fmax do 

writelnCerrpop,' * ,ce l lEi - l3 :4:2 , ' 
' ' , freqCil:4); 

L:»0; 
for i:=2 to fmax do 

L:aL+freqCil 

:10); 

: ' ) ; 
:4 :2 , ' ,freqCH:4); 

a ' , c e l l C i l : 4 : 2 , 

writelnC errpop); 
writelnC errpop,' 
writelnC errpop,' 
writelnC errpop.' 
writelnC errpop); 
a:siL/popE9»ll; 
b:a<over/cum; 
cracover/eum; 
d:»bover/eum; 
writelnC errpop,' 
writelnC errpop,' 

I ' t a i e i S , ' ) ' ) ; 

error mean (excl 100% over): 
error var (excl 10O£ over) = 
population var/n (eq. 92) 

' ,xbar:8:6); 
',sampvar:8:6); 
:' ,wtvar:8:6); 

overstatement:'); 
number of items(^ of total ) ' ,L:10, 

writelnC errpop,' 
writelnC errpop,' 

book value of items overstated:'); 
^.^ , part ia l ly overstated(# of total) 

b o v e r : 1 0 , ' ( ' , d : 8 : 6 , ' ) ' ) ; 
writelnCerrnop,' 1Q0# overstated(# of tota l ) 

coverslO,"'( * , c : 8 : 6 , ' ) ' ) ; 
writeln( errpop, • overstatement(# of total ) 

o v e r : 1 0 , ' ( ' , b : 8 : 6 , ' ) ' ) ; 
a:=freqEl3/popC9,l3; 
b:=under/oum; 
c:=bunder/cum; 
writeln( errpop) 
writelnC errpop, 
writelnC errpop, 

freq 1 :10, ' ( 
writeln(errpon, 

bunder:10,'X ' 
writelnC errpop, 

under:10,•( ' . 
writelnC errpop) 
writelnC errpop, 
writelnC errpop, 
writelnC errpop, 
writelnC errpop. 
writelnC errpop) 
writelnC errpop, 
writeln(errpop) 
writelnC errpop, 

understatement:'): 
number of items(96 of tota l ) ' , 

, a :S :6 ,* ) ' ) ; 
book value of itemB(5& of total ) ' , 

e:8s6,*)*)j ' 
understatement(?f» of total ) ' , 

b:8:6,»)»); 
input da ta : ' ) ; 

seeds' ,seed:10:8) ; 
pl a ' ,p l :5 :4 ) ; 
p2 =' ,p2:5:4); 

re la t ive error cum dist (from f i l e "dis t") : ' ) ; 

x P(x) ' ) ; 
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for i:=l to cellcount do 
writeln(errpop,' *, j d i s t t i , l l : 7 : 5 , ' ' , j d i s t [ i , 2 3 : 7 : 5 ) ; 

end. ("population*) 
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APPENDIX P 

INPUT DATA FOR TEST 

Prooortion o f 
Test Population* o l ( t o t a l ) 

1L/ .01 
1H/.01 
2L/ .01 
2H/.01 
3L/ .01 
3H/.01 
4 / . O l 

1L/ .05 
1H/.05 
2L/.05 
2H/.05 
3L/ .05 
3H/.05 
4 / . 0 5 

.0850 

.1100 

.0800 

.0900 

.0190 

.0250 

.0132 

.5000 

.4950 

.4000 

.4300 

.1130 

.0950 

.1050 

POPULATIONS 

Items in Error 
D 2 ( 1 0 0 # ) 

.0000 

.0000 

.0020 

.0012 

.0000 

.0000 

.0000' 

.0000 

.0000 

.0120 

.0120 

.0000 

.0000 

.0000 

Seed 
.3584 
.6523 
.0620 
.1736 
.6801 
.8614 
.7403 

.5472 

.7210 

.6247 

.8482 

.0864 

.1397 

.4593 

Cumulative Distribution Function 
1L x: .025 .05 .10 .15 .20 .30 .40 .50 .60 

Pz: .22 .39 .63 .78 .86 .95 .98 .99 1.0 
1H x: .025 .05 .10 .15 .20 .30 .40 .60 .80 1.0 

Px: .43 .61 .74 .80 .85 .90 .93 .96 .98 1.0 
3L x: .30 .35 .40 .45 .50 .55 .60 .65 .70 .80 

Px: .02 .07 .16 .31 .50 .69 .84 .93 .98 1.0 
3H x: .10 .20 .30 .35 .40 .45 .50 .55 .60 .65 .70 .80 .90 1.0 

Px: .01 .04 .12 .19 .28 .39 .50 .61 .72 .81 .88 .96 .99 1.0 
4 x: .10 .20 .30 .40 .50 .60 .70 .80 .90 1.0 

F_: .10 .20 .30 .40 .50 .60 .70 .80 .90 1.0 

"legend: la J, 2=J-100, 3=unimodal, 4=uniform 
Lalow variance, H=high variance 
.01 and .05 refer to the target error rates 

'''the c . d . f . s for populations 1 and 2 are the same; a l l c . d . f . s 
begin at x=.00 P =.00 except 3L, which i s x=.20 F =.00 

JE A 
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